SHORT REPORT

Extremely high maternal alkaline phosphatase serum concentration with syncytiotrophoblastic origin

A Borokai, N G Than, R Magenheim, S Bellyei, A Szigeti, P Deres, B Hargitai, B Sumegi, Z Papp, J Rigo Jr

An extremely high alkaline phosphatase (AP) concentration (3609 IU/litre) was found in a 20 year old primigravida at 37 week’s gestation, prompting an examination of its histological and cellular origin. Immunohistochemistry and western blots using antibodies against AP, Ki-67, phospho-protein kinase B (Akt), phospho-p44/42 mitogen activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/Erk1/2), phospho-glycogen synthase kinase-3β (GSK-3β), phospho-stress activated protein kinase/c-Jun N-terminal kinase, total-Akt, total-GSK-3β, and phospho-p38-MAPK were carried out on index and control placental samples of the same gestational age. Compared with controls, staining of the index placenta showed minimal AP labelling of the brush border and remarkable positivity of the intervillous space. Cytotrophoblastic proliferation was 8–10% in the index placenta compared with 1–2% in controls. The index placenta also had raised concentrations of protein kinases with important roles in cell differentiation. The proliferation and differentiation rates of the cytotrophoblasts were found to be five times higher in index samples than in controls. It is hypothesised that loss of syncytial membranes in immature villi led to increased AP concentrations in the maternal circulation and decreased AP staining of the placenta. Loss of the syncytium might also stimulate increased proliferation of villous cytotrophoblasts, which would then fuse and maintain the syncytium.

The aetiology of increased AP is still unknown, and because we could find no literature dealing with its cellular background we decided to investigate the biochemical and pathophysiological aspects of this phenomenon.

“Extremely high alkaline phosphatase concentrations should arouse a suspicion of bone, hepatic, endocrine, and renal diseases, malignancy, and drug treatment, but can also be associated with heavy smoking and pregnancy.”

METHODS

Clinical data

A 20 year old primigravida was admitted to the clinic because of oedema and suspicion of pre-eclampsia during the 37th gestational week. After a general examination and precise observation, an extremely high serum AP concentration was detected (3609 U/litre). Blood pressure was normal, there was no proteinuria, and the patient had no complaints. Laboratory tests showed that her blood parameters and renal, hepatic, and endocrine functions were normal. No systemic immune disease was detected. Ovarian tumour markers (CA-125, carcinoembryonic antigen, and CA-19-9) were non-pathological. The bone associated AP fraction was determined to be only 97 U/litre (normal range, 100–350). Electrophoresis of total AP using the Hydragel Protein kit (Sebia, Issy-les-Moulineaux, France) showed the presence of 65.9% (2128 U/litre) P1 and 30.1% (972 U/litre) P2 placental isozymes. On the 38th week of pregnancy, a mature girl was born by vaginal labour with a weight of 3200 g and an Apgar score of 9/10. The 730 g placenta had no macroscopic abnormalities or infarction. The human chorionic gonadotrophin concentration declined quickly after birth, whereas the concentration of AP decreased exponentially during the following weeks and reached normal values at 12 weeks postpartum (fig 1).

Histopathology and immunohistochemistry

Samples were obtained from the index case and from normal term placentas (n = 5). Tissue blocks were routinely fixed in formalin and embedded in paraffin wax. Full thickness representative blocks were taken from three different central-paracentral areas of each placenta and an en face block of the maternal surface was cut. Further blocks from the umbilical cord and membranes were sampled for routine examination.

Abbreviations: Akt, protein kinase B; AP, alkaline phosphatase; GSK-3β, glycogen synthase kinase 3β; p38-MAPK, p38 mitogen activated protein kinase; p44/42 MAPK/Erk1/2, p44/42 mitogen activated protein kinase/extracellular signal regulated kinase 1/2; PLAP, placental-like alkaline phosphatase; SAPK/JNK, stress activated protein kinase/c-Jun N-terminal kinase; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
only. Consecutive serial sections (4 μm thick) of the same blocks were also cut and prepared for immunostaining. Tissue samples were stained with haematoxylin and eosin for histopathological examination, or with monoclonal IgG antibodies against cell proliferation marker Ki-67 (Histo-pathology, Pecs, Hungary) and placental AP (Lab Vision, Freemont, California, USA) for immunohistochemical evaluation. Immunostaining was performed by the streptavidin–biotin–immunoperoxidase technique, with H 2O2/3-amino-9-ethylcarbazole development using the Universal kit (Immunotech, Marseille, France). Index and control placentas were examined blindly according to a standard protocol by two of the authors (BH and AB) independently.

SDS-PAGE and chemiluminescent western blot analysis

Explants (100 mg each) were taken from five different areas of normal and index placental tissues, and were homogenised on ice in 10 ml of lysate buffer (pH 7.5, 50mM Tris, 1mM PMSF). Homogenates were centrifuged at 4000 g for five minutes, supernatants were collected, and their protein contents were measured using the BioRad assay and equalised in Laemmli sample buffer. Protein extracts (10 μg each) were loaded and separated by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Western blot analyses were performed by applying rabbit polyclonal IgGs to the following antigens: phospho-protein kinase B (phospho-Akt), phospho-p44/42 mitogen activated protein kinase/extracellular signal regulated kinase 1/2 (phospho-p44/42 MAPK/Erk1/2), phospho-glycogen synthase kinase-3β (phospho-GSK-3β), phospho-stress activated protein kinase/c-Jun N-terminal kinase (phospho-SAPK/JNK), total-Akt, and total-GSK-3, in addition to mouse monoclonal IgG to phospho-p38-MAPK (Cell Signaling Technology Inc, Beverly, Massachusetts, USA). Horseradish peroxidase labelled goat antirabbit and antimouse IgGs (Sigma-Aldrich Co, St Louis, Missouri, USA) were used as secondary antibodies. Protein bands were revealed by the ECL chemiluminescence system (Amersham Pharmacia Biotech, Little Chalfont, Buckinghamshire, UK). This was followed by quantitative densitometric analysis of the bands with Scion Image for Windows and ImageJ software.

RESULTS

Histopathology

In the index case, there were increased numbers of syncytial knots on the surface of the chorionic villi (fig 2A). Several groups of avascular tertiary villi with homogenous hyaline-like stroma were also found but fetal vessel thrombosis was not revealed. “Proliferation centres” were frequent in the
immature villi, unlike in other term placentas (fig 2B). Several areas showed villous crowding, where the intervillous space was nearly obliterated by the large, poorly vascularised villi (fig 2C). Histopathology also showed asymmetrical intimal fibrin cushions in the fetal chorionic vessels. The maternal vessels showed no specific changes. Control placentas showed none of the above listed lesions.

Immunohistochemistry
Similar to the data in the literature, in control placentas AP was normally found on the brush border membranes of the syncytiotrophoblast layer of the villus surface (fig 2D). No staining could be seen in other villous cells, such as cytotrophoblasts. Staining of the index placenta resulted in minimal AP labelling of the brush border, and yielded a remarkable diffuse AP positivity in the intervillous space (fig 2E). We used anti-Ki-67 IgG and counted 10 fields in every case to examine the average ratio of proliferating cells, which was found to be approximately 1–2% in control placentas (fig 2F), whereas the index placenta showed significantly increased positivity of the cytotrophoblastic cells underlining the syncytiotum so that the average ratio of proliferating cells was 8–10% (fig 2G).

SDS-PAGE and chemiluminescent western blot analysis
Five different proteins involved in cellular signal transduction pathways were investigated in the term placental tissue extracts. As shown in fig 3, compared with normal placentas, some markers showed remarkable overexpression in the index sample. Phospho-GSK-3β (fig 3A) showed a similar increase to that of phospho-Akt (fig 3C), whereas there were no differences in total-GSK-3 (fig 3B) and total-Akt (fig 3D) expression. Three other basic signal transduction proteins—phospho-p38-MAPK (fig 3E), phospho-SAPK/JNK (fig 3F), and phosphorylated p44/42 MAPK/Erk1/2—were found to be overexpressed in the index placenta compared with controls (fig 3G). Densitometric analyses were performed, and the following differences in protein content were found in the index case compared with controls (100%): phospho-GSK 3β, 152%; total-GSK-3, 106%; phospho-Akt, 174%; total-Akt, 103%; p38MAPK, 249%; phospho-p44/42 MAPK/Erk1/2, 561%; and phospho-SAPK/JNK, 202% (table 2).

DISCUSSION
Only a few publications could be found that dealt with isolated extreme rises in AP during pregnancy, although
Numerous diseases are known to be related to high AP concentrations (table 1). It has been reported that raised AP concentrations can predict premature birth in the second trimester, but this parameter has no clinical relevance because of its low sensitivity and specificity. Placental infarcts or abruption could also be the reason for increased AP concentrations can predict premature birth in the second trimester, but this parameter has no clinical relevance because of its low sensitivity and specificity. Placental infarcts or abruption could also be the reason for increased AP concentrations.

Table 2 Comparison of immunohistochemistry and western blot results in the index and control placentas

<table>
<thead>
<tr>
<th>Method</th>
<th>Index placenta</th>
<th>Control placenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunohistochemistry</td>
<td>Slight and discontinuous AP staining in syncytiotrophoblast brush border membrane</td>
<td>Intensive continuous AP staining in syncytiotrophoblast brush-border membrane</td>
</tr>
<tr>
<td></td>
<td>8–10% Ki-67 positive syncytiotrophoblast cells/field on average</td>
<td>1–2% Ki-67 positive syncytiotrophoblast cells/field on average</td>
</tr>
<tr>
<td></td>
<td>Total-Akt 103%</td>
<td>Total-Akt 100%</td>
</tr>
<tr>
<td></td>
<td>Total-GSK-3βi 106%</td>
<td>Total-GSK-3βi 100%</td>
</tr>
<tr>
<td></td>
<td>Phospho-Akt 174%</td>
<td>Phospho-Akt 100%</td>
</tr>
<tr>
<td></td>
<td>Phospho-GSK-3βi 152%</td>
<td>Phospho-GSK-3βi 100%</td>
</tr>
<tr>
<td></td>
<td>Phospho-Erk 1/2 561%</td>
<td>Phospho-Erk 1/2 100%</td>
</tr>
<tr>
<td></td>
<td>Phospho-SAPK/JNK 202%</td>
<td>Phospho-SAPK/JNK 100%</td>
</tr>
<tr>
<td></td>
<td>p38MAPK 249%</td>
<td>p38MAPK 100%</td>
</tr>
<tr>
<td>Western blot</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Akt, protein kinase B; AP, alkaline phosphatase; GSK-3βi, glycogen synthase kinase-3i; p38MAPK, p38 mitogen activated protein kinase; Erk1/2, extracellular signal regulated kinase 1/2; SAPK/JNK, stress activated protein kinase/c-Jun N-terminal kinase.
 activates cell growth, survival, proliferation, and differentiation, at the same time inhibiting proapoptotic signals via phosphorylation and thus inactivation of GSK-3β. Summarising our observations, we suggest that changes in the expression of phosphorylated p44/42 MAPK/Erk1/2 taken together with the immunohistochemical findings of increased Ki-67 expression indicate an intensive cytotrophoblastic proliferation. The inhibition of apoptosis is mediated increased Ki-67 expression indicate an intensive cytotrophoblastic proliferation. The inhibition of apoptosis is mediated by at least two pathways. Phospho-Akt inactivates GSK-3β, a proapoptotic factor, whereas p38MAPK, an important factor for cell survival, might also indicate the activation of an alternative antiapoptotic process. According to the data in the literature, the cell activating effect of p38MAPK is mediated via several transcription factors (Stat-1, Atf-2, etc.), similar to the JNK/JUN pathway.

In control placentas, we detected strong AP labelling of the brush border membrane of the syncytiotrophoblasts, whereas minimal AP staining of the brush border was found in the immature villi of the index placenta, and a remarkable diffuse AP positivity was seen in the intervillous spaces. We hypothesise that loss of the syncytial membranes in immature villi led to increased AP concentrations in the maternal circulation and decreased AP staining of the placenta. Loss of the syncytiotum might also have stimulated increased proliferation of the villous cytotrophoblasts, which would then fuse and maintain the syncytiotum. Inhibition of glycogen synthase kinase-3 may also have stimulated increased proliferation of the villous cytotrophoblasts, which would then fuse and maintain the syncytiotum.

Although cytotrophoblast proliferation and the increased AP concentration did not affect fetal development in our present case, attention should be drawn to the pathophysiology of this phenomenon. Our investigations shed new light on a significant change in placental function, the exact cause of which is still to be elucidated. In conclusion, when a raised serum AP concentration is present during pregnancy, differential diagnostically important diseases must be systematically excluded. In such cases, we would also recommend precise monitoring of fetal and maternal conditions, histopathological examination of the placenta, and more attention to the follow up of declining AP concentrations after delivery.

ACKNOWLEDGEMENTS
The authors would like to thank Dr G Szekeres for technical assistance in immunostaining and S Starkey for critical reading of the manuscript. This work was supported by Hungarian Grants ETT T-09 163/01, 149/2003; FKFP 0166/2001; OMFB-BIO 00201/2002; and OTKA T/020622, T/023076, T/046473, M/36996.

REFERENCES

www.jclinpath.com
Extremely high maternal alkaline phosphatase serum concentration with syncytiotrophoblastic origin

A Boronkai, N G Than, R Magenheim, S Bellyei, A Szigeti, P Deres, B Hargitai, B Sumegi, Z Papp and J Rigo, Jr

J Clin Pathol 2005 58: 72-76
doi: 10.1136/jcp.2003.015362

Updated information and services can be found at:
http://jcp.bmj.com/content/58/1/72

References

This article cites 8 articles, 1 of which you can access for free at:
http://jcp.bmj.com/content/58/1/72#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Immunology (including allergy) (1664)
- Small intestine (45)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/