KSHV/HHV-8 associated lymph node based lymphomas in HIV seronegative subjects. Report of two cases with anaplastic large cell morphology and plasmablastic immunophenotype

A Carbone, A Gloghini, E Vaccher, G Marchetti, G Gaidano, U Tirelli

Background: Kaposi sarcoma associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) associated lymphomas, which often develop in human immunodeficiency virus (HIV) infected patients with advanced AIDS, present predominantly as primary effusion lymphoma (PEL) or, less frequently, as “solid” extracavitary based lymphomas, associated with serous effusions. These last lymphomas, also called “solid PEL”, have been reported before the development of an effusion lymphoma and after resolution of PEL. Interestingly, KSHV/HHV-8 associated lymphomas that present as solid or extracavitary based lesions in HIV seropositive patients without serous effusions have been reported recently.

Methods/Results: This paper provides evidence for the existence of a previously undescribed KSHV/HHV-8 associated lymphoma in HIV seronegative patients without serous effusions. These lymphomas exhibit a predilection for the lymph nodes and display anaplastic large cell morphology. These tumours were completely devoid of common cell type specific antigens, including epithelial and melanocytic cell markers. B and T cell associated antigens and other commonly used lymphoid markers were absent or weakly demonstrable in a fraction of the tumour cells. Conversely, immunohistochemical studies showed strong immunostaining with plasma cell reactive antibodies.

Conclusions: Analysis of viral infection and immunohistological studies are of primary importance to define this lymph node based KSHV/HHV-8 associated lymphoma with anaplastic large cell morphology and plasmablastic immunophenotype occurring in HIV seronegative patients without serous effusions.

Kaposi sarcoma associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), was initially discovered in tissue biopsies of AIDS related Kaposi sarcoma, a tumour consistently infected by this virus. In addition to Kaposi’s sarcoma, KSHV/HHV-8 is also associated with three distinct lymphoproliferative diseases occurring most often in patient with human immunodeficiency virus (HIV) infection/AIDS, namely: primary effusion lymphoma (PEL), multicentric Castleman disease (MCD), and MCD associated plasmablastic lymphoma. A new KSHV/HHV-8 associated lymphoproliferative disease, termed “germinotropic lymphoproliferative disorder”, has recently been described in HIV seropositive patients.7

"Because of the morphological and immunophenotypical features of these large cell tumours, we propose that they should be classified as KSHV/HHV-8 associated lymphomas with anaplastic large cell morphology and plasmablastic immunophenotype"7

Intriguingly, cases of KSHV/HHV-8 associated extracavitary lymphoma with serous effusions,2 8–10 KSHV/HHV-8 associated extracavitary lymphomas have been reported before the development of an effusion lymphoma8 and after the resolution of PEL.11 These cases, also called “solid PEL”, primarily involved extranodal tissue locations and had identical morphology, immunophenotype, KSHV/HHV-8 viral status, and immunoglobulin light chain gene rearrangements to their PEL counterparts. This group of KSHV/HHV-8 associated lymphomas in HIV seropositive patients with serous effusions might also include a recently reported case of synchronous presentation of a pleural cavity PEL and a tongue based KSHV/HHV-8 positive lymphoma. Both tumours displayed plasmablastic features.12

The spectrum of KSHV/HHV-8 associated lymphoproliferative diseases in the HIV setting has been expanded by the identification of cases of KSHV/HHV-8 associated extracavitary lymphomas without serous effusions.13–21 In general, these lymphomas are composed of a proliferation of immunoblastic-like cells, although in some cases the neoplastic cells show greater pleomorphism and anaplastic features. Among the KSHV/HHV-8 associated extracavitary lymphomas without serous effusions, a unique case simulating CD30 positive anaplastic large cell lymphoma in an HIV seropositive patient has recently been reported.22 It was a lymph node based lymphoma resembling CD30 positive ALCL both histologically and immunophenotypically.

KSHV/HHV-8 associated lymphoproliferative diseases have also been reported in HIV seronegative patients. These lymphomas were mainly PEL.12–21 However, cases of KSHV/HHV-8 associated extracavitary lymphoma have been reported in HIV seronegative patients with serous effusions.22–29

Abbreviations: AQP3, aquaporin-3; CigG, cytoplasmic IgG; EBER, Epstein-Barr virus encoded small non-coding RNA; EBNA-1, Epstein-Barr virus nuclear antigen 1; EBV, Epstein-Barr virus; GRA, granzyme A; HHV-8, human herpesvirus 8; HIV, human immunodeficiency virus; ISH, in situ hybridisation; LMP, latent membrane protein; KSHV, Kaposi sarcoma associated herpesvirus; MCD, multicentric Castleman disease; ORF, open reading fragment; PEL, primary effusion lymphoma; SELPLG, selectin P ligand; VEGF, and vascular endothelial growth factor; vIL-6, viral interleukin 6.
In our present report, we provide evidence for the existence of a previously undescribed KSHV/HHV-8 associated lymphoma in HIV seronegative patients without serous effusions. The reported lymphoma cases were extracavitary, with a predilection for the lymph nodes, and displayed anaplastic large cell morphology. Paraffin wax immunohistochemical studies showed that the tumour cells were strongly positive for the plasma cell reactive antibody MUM1/IRF4. B and T cell associated antigens and other commonly used lymphoid markers were absent or weakly demonstrable in a considerable proportion of tumour cells. Unequivocally, these tumours were completely devoid of common cell type specific antigens, including epithelial and melanocytic cell markers. Because of the morphological and immunophenotypical features of these large cell tumours, we propose that they should be classified as KSHV/HHV-8 associated lymphomas with anaplastic large cell morphology and plasmablastic immunophenotype. These lymphomas may correspond to a distinct entity within the heterogeneous group of diffuse large B cell lymphomas with plasmablastic differentiation.

MATERIALS AND METHODS

Case reports

The two HIV seronegative patients with KSHV/HHV-8 associated lymphomas were aged 52 and 75 years. Table 1 summarises their demographic and clinical features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/sex</td>
<td>75/M</td>
<td>52/M</td>
</tr>
<tr>
<td>HHV-8 related disease</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>HHV-8 viraemia (cp/ml)</td>
<td>231430</td>
<td>2850</td>
</tr>
<tr>
<td>EBV viraemia (cp/ml)</td>
<td>Negative</td>
<td>1074</td>
</tr>
<tr>
<td>CD4 cell count (x10^9/l)</td>
<td>470</td>
<td>501</td>
</tr>
<tr>
<td>PS (ECOG)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Stage (Ann Arbor)</td>
<td>IVB</td>
<td>IIIA</td>
</tr>
<tr>
<td>B symptoms</td>
<td>Severe weight loss</td>
<td>Absent</td>
</tr>
<tr>
<td>Site of involvement</td>
<td>LN, Waldeyer’s ring, soft tissue, spleen</td>
<td>LN, spleen</td>
</tr>
<tr>
<td>Bulky disease</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Major laboratory abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe anaemia (< 80 g/l)</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Thrombocytopenia (< 100 x 10^9/l)</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Coomb’s test</td>
<td>Present</td>
<td>Negative</td>
</tr>
<tr>
<td>Abnormal LDH serum concentration (>=460 U/ml)</td>
<td>Present</td>
<td>Negative</td>
</tr>
<tr>
<td>Hypoalbuminaemia (< 30 g/l)</td>
<td>Present</td>
<td>Negative</td>
</tr>
<tr>
<td>Treatment</td>
<td>CHOP</td>
<td>CEP</td>
</tr>
<tr>
<td>Outcome (months)</td>
<td>Dead (2)</td>
<td>Alive (8)</td>
</tr>
<tr>
<td>Cause of death</td>
<td>NHL</td>
<td>–</td>
</tr>
</tbody>
</table>

CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; CEP, cyclophosphamide, epidoxorubicin, vincristine, prednisone; EBV, Epstein-Barr virus; HHV-8, human herpesvirus type 8; HIV, human immunodeficiency virus; KSHV, Kaposi sarcoma associated herpesvirus; LDH, lactate dehydrogenase; LN, lymph node; NHL, non-Hodgkin lymphoma.

Clinical evaluation

At diagnosis, both patients were evaluated for the extent of lymphoma by physical examination, chest radiography, computed tomography of the thorax and abdomen, bone marrow aspiration and biopsy, lumbar puncture for spinal fluid, blood chemistry, and CD4 cell count. The lymphoma stage was assigned according to the Ann Arbor staging system. Informed written consent was obtained from the patients, and tissue collection was approved by the institutional review board.

The two reported cases of KSHV/HHV-8 associated lymphoma occurring in HIV seronegative patients without serous effusions belonged to a series of KSHV/HHV-8 associated lymphoproliferative diseases referred to a single institution (Aviano Cancer Centre, Italy) where they were diagnosed and treated. Three other cases of KSHV/HHV-8 associated lymphoma developing in HIV seropositive patients without serous effusions belonged to the same institutional series. These three cases, together with case 1 reported here, were included in a previous study focusing on their relatedness to AIDS related PEL. In Case 1, in which the lymphoma developed in an HIV seronegative patient, was included mainly for epidemiological purposes. Within the series of KSHV/HHV-8 associated lymphoproliferative diseases there were also 15 PELs (13 in HIV seropositive and two in HIV seronegative patients). PEL cases were classified on the basis of the unusual clinicopathological and virological (for example, KSHV/HHV-8 positivity) characteristics of the lymphoma. Six of 15 PEL cases were included in a previous study based on the gene profiling expression analysis of AIDS related lymphomas.

Analysis of viral infection

The lymph node samples from both cases presented here were investigated for tumour infection by KSHV/HHV-8 and Epstein-Barr virus (EBV).

The presence of KSHV/HHV-8 was ascertained by immunohistochemistry using a rat monoclonal antibody against the KSHV/HHV-8 latency associated nuclear antigen encoded by viral open reading fragment (ORF) 73 (Advanced Biotechnologies, Columbia, Maryland, USA). The cases were also tested for virus interleukin 6 (vIL-6), a KSHV/HHV-8 virus open reading frame encoded by ORF 73.
cytokine homologue, using a rabbit polyclonal antibody (Advanced Biotechnologies). Bouin’s or formalin fixed, paraffin wax embedded tissue sections were pretreated in a microwave oven at 250 W for 30 minutes in EGTA solution (1mM, pH 8), and then immunostained on an automated immunostainer (Nexes, Ventana Medical Systems Inc, Tucson, Arizona, USA) according to a modified version of the company’s protocols. Negative controls, which were invariably negative, consisted of omission of the primary antibody and substitution with phosphate buffered saline. Positive controls for ORF73 consisted of KS biopsy samples, whereas positive controls for vIL-6 consisted of AIDS associated MCD biopsy samples.

The presence of KSHV/HHV-8 was confirmed by polymerase chain reaction (PCR) analysis of three KSHV/HHV-8 regions (KS233, ORFK9-3, and ORF72) using previously reported primer sequences.33 PCR analysis was performed on DNA isolated from formalin tissues using the Nucleospin tissue system (Macherey-Nagel GmbH and Co, Düren, Germany) according to the manufacturer’s protocol, with minor modifications. Each PCR reaction used approximately 0.2 µg of genomic DNA, 100 pmol of each primer, 2 U Taq polymerase, 100mM of each dNTP, 1.5mM Tris hydrochloride (pH 9.0), and 0.1% Triton X-100 in a final volume of 50 µl. PCR amplification was carried out at 95°C for six minutes (one cycle); 95°C for 15 seconds, 60°C for 15 seconds, and 72°C for five minutes (35 cycles); and 72°C for five minutes (one cycle).

Infection by EBV was investigated by several approaches, including in situ hybridisation (ISH) and PCR. EBV encoded small non-coding RNA (EBER) ISH was performed on Bouin’s or formalin fixed tissue sections, as described previously.34 PCR analysis of EBV was performed with primers SL-1 and SL-3, representative of the EBV nuclear antigen 1 (EBNA-1) gene, as reported previously.35

In the EBV positive case, immunostaining for latent membrane protein 1 (LMP1) was performed with an LMP1 specific antibody (Dako A/S, Glostrup, Denmark) and the alkaline phosphatase anti-alkaline phosphatase method.37 KSHV/HHV-8 serology was performed by an immunofluorescence assay.38 KSHV/HHV-8 quantitative PCR was performed on DNA extracted from plasma using the QiAmp Kit (Qiagen Gmbh, Hilden, Germany). Real time (TaqMan) PCR was used for the detection of the HHV-8 67 bp capsid protein gene, as described previously in detail.39

EBV plasma DNA: a PCR assay based on LMP2A sequence amplification was performed as described previously.39

Molecular analysis of clonality

ISH was used to detect immunoglobulin light chain mRNA. The κ and λ light chain mRNA was detected in Bouin’s fixed, paraffin wax embedded sections using a commercial kit (Dako A/S) under conditions recommended by the supplier. PCR analysis of immunoglobulin heavy chain (IgVH) and light chain (IgVL) and T cell receptor γ chain gene rearrangements was carried out according to standard protocols as described previously.36

Immunohistological studies

Our study cases had been immunophenotyped as previously described on paraffin wax embedded lymph node tissue sections, which were fixed in Bouin’s solution or neutral buffered formalin. Plasma cell markers included MUM1/IRF4,40 VS38c,41 and CD138.42 A monoclonal antibody (Serotec, Oxford, UK) was used to test the expression of cytoplasmic IgG showing that the tumour cells are positive for this antigen (original magnification, ×40).43 Immunohistochemistry for cytoplasmic IgG showing that the tumour cells are positive for this antigen (original magnification, ×40).43

All tumour cells show intense nuclear staining for MUM1/IRF4. All tumour cells show intense nuclear staining for MUM1/IRF4. All tumour cells show intense nuclear staining for MUM1/IRF4.
(AQP3), selectin P ligand (SELPLG), and vascular endothelial growth factor (VEGF). They were investigated using commercially available antibodies (GRA, AQP3, SELPLG, and VEGF; Santa Cruz Biotechnology, Santa Cruz, California, USA). They were tested on paraffin wax embedded sections after antigen retrieval (30 minutes in EGTA solution in a microwave oven at 250 W) and immunostained on an automated immunostainer (Nexes). Negative controls were performed as described above.

RESULTS
Demonstration of KSHV/HHV-8 by immunohistochemistry and PCR
Immunohistochemistry for the KSHV/HHV-8 ORF73 protein revealed that this antigen was present in the nuclei of almost all of the tumour cells of both cases (figs 1, 2). In contrast, staining for vIL-6 was cytoplasmic. vIL-6 was detected on most tumour cells of case 2 (fig 2), whereas it was restricted to a limited number of tumour cells in case 1 (not shown). On PCR analysis, bands compatible with KSHV/HHV-8 genomic sequences were detected in both cases (figs 1 and 2).

Histopathological analysis of the KSHV/HHV-8 associated lymphomas
In both cases the tumours showed predominantly lymph node involvement. Microscopically, the lymph nodes were infiltrated by diffusely growing large neoplastic cells, which displayed anaplastic features. In some areas of the lymph nodes, the neoplastic cells showed a distinctive sinusoid pattern of growth. In these areas, groups of large anaplastic cells were located essentially within the sinuses (fig 1). The tumour cells were discohesive and had a moderate to abundant amount of cytoplasm. They showed striking variations in size and had more or less eccentrically placed, horse shoe-like nuclei. In case 2, multilobated nuclei and multinucleated giant cells were numerous (fig 2).

Demonstration of EBV by ISH, immunohistochemistry, and PCR
Using EBER ISH, only one case (case 2) was positive for EBV (fig 2). These results were confirmed by PCR analysis of the EBNA-1 region of EBV. EBV infection was not associated with LMP1 expression (table 2).

Molecular analysis of clonality
Table 2 shows the results with regard to clonality. In both cases, ISH studies failed to detect monoclonality. Neither case yielded IgVH or IgVL rearrangement, although the cases were readily amplified with a control gene fragment of similar size. Analysis of T cell receptor γ rearrangement was negative (not shown).

Immunophenotypical analysis
Table 2 shows the results of the immunophenotypical analysis. Immunohistological analysis revealed that only case 2 was positive for CD45, whereas only case 1 displayed...
positivity for CD3 and CD30. The staining for all these markers was weak and restricted to a small proportion of tumour cells. CD3 was mainly localised in the cytoplasm. Conversely, both cases showed intense positive staining for the plasma cell associated markers CD138 and MUM1/IRF4 (table 2). In particular, all tumour cells were strongly positive for MUM1/IRF4 (figs 1, 2). Furthermore, several tumour cells were positive for CD15 (figs 1, 2). Finally, in both cases a subset of cells was positive for CD43.

To investigate the tumour phenotype further, we tested the expression of an additional panel of proteins that are specifically expressed by PEL tumour cells. Consistently, both cases showed intense positive staining for the plasma cell reactive antibodies CD138 and MUM1/IRF4, confirming the phenotypic relatedness of these lymphomas to PEL. With regard to these features, it is important to note that previous gene expression data have suggested that the tumour cells of PEL are related to a mature B cell shifting towards terminal plasma cell differentiation.32

DISCUSSION

KSHV/HHV-8 associated lymphomas, which often develop in HIV infected patients with advanced AIDS, present predominantly as PEL10 or, less frequently, as solid, extracavitary based lymphomas, associated with serous effusions.11,12 Interestingly, KSHV/HHV-8 associated lymphomas that present as solid or extracavitary based lesions in HIV seropositive patients without serous effusions have been reported recently.9,13–18 In our present report, we provide evidence of the existence of KSHV/HHV-8 associated solid, extracavitary based lymphomas in HIV seronegative patients without serous effusions. Characteristically, these lymphomas had a predilection for the lymph nodes and displayed anaplastic large cell morphology. Immunohistochemistry showed unequivocally that these tumours lacked epithelial and melanocytic cell markers. Based on the immunophenotypical results, there were difficulties in assigning a lymphoid lineage in these KSHV/HHV-8 associated lymphomas using common phenotypic markers (table 2). However, although molecular studies failed to detect monoclonality, the presence of CtgG in these cases suggested that these tumours were related to cells of the plasma cell series. The detection of strong immunostaining with plasma cell reactive antibodies confirmed that these lymphomas were related to cells of the B cell system and had undergone plasmacellular differentiation.

Consistent with these results, these KSHV/HHV-8 associated solid lymphomas expressed a series of proteins that are specifically expressed by PEL tumour cells, confirming the phenotypic relatedness of these lymphomas to PEL. With regard to these features, it is important to note that previous gene expression data have suggested that these tumours were related to cells of the plasma cell series.

Although molecular studies failed to detect monoclonality, the presence of cytoplasmic IgG in these cases suggested that these tumours were related to cells of the plasma cell series11.

Both patients presented with diffuse lymphadenopathy and spleen involvement. However, virological features and clinical outcome were significantly different between the two patients. Patient 1 had more advanced stage and rapidly fatal disease in addition to the presence of haematological abnormalities and a high KSHV/HHV-8 viral load compared with patient 2. These data suggest a correlation between the evolution of clinical and virological events. It is noteworthy that a high HHV-8 viral load correlates with clinical exacerbation of MCD in HIV infected patients.43,44

There are both similarities and important differences between KSHV associated germinalotropic lymphoproliferative disorder and our present cases of lymphoma that harbour KSHV/HHV-8 in HIV seronegative patients. Germinalotropic lymphoproliferative disorder occurs in immunocompetent HIV seronegative individuals without serous effusion, presents as localised lymphadenopathy, and shows a favourable response to treatment. This disorder is composed of plasmablasts with a pronounced tropism for the germinal centre.11

Table 2 Virological and immunophenotypic characteristics of KSHV/HHV-8 associated solid lymphomas

<table>
<thead>
<tr>
<th>Protein</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSHV (IHC)</td>
<td>ORF73+</td>
<td>ORF73+</td>
</tr>
<tr>
<td>KSHV (PCR)</td>
<td>K330+</td>
<td>K330+</td>
</tr>
<tr>
<td>SELPLG</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MUM1/IRF4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD138</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD45</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD79a</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD10</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD80</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD138</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD45R0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ki-67/MIB1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VS38c</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EMA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CtgG</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD40</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD100</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Keratin (AE1/AE3)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Keratin (MNF-116)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Granzyme A</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>AQP3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SELPLG</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VEGF</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+, almost all neoplastic cells positive; +/−, most neoplastic cells positive; −/+, minority of neoplastic cells positive; −, few neoplastic cells positive; −/−, all neoplastic cells negative; NE, not evaluable.

www.jclinpath.com

Take home messages

- We report a previously undescribed Kaposis sarcoma associated herpesvirus/human herpesvirus 8 associated lymphoma in human immunodeficiency virus seronegative patients without serous effusions.
- These lymphomas show a predilection for the lymph nodes and display anaplastic large cell morphology.
- They were completely devoid of common cell type specific antigens but showed strong immunostaining with plasma cell reactive antibodies.
- Thus, analysis of viral infection and immunohistological studies are of primary importance to define this tumour.
centres of lymphoid follicles. In contrast, the lymphomas described here presented at an advanced stage of disease (stage III–IV), with generalised lymphadenopathy, and spleen involvement. One patient (case 1) also showed extranodal localisation. Microscopically, these lymphomas were characterised by large neoplastic cells, with anaplastic features, diffusely infiltrating the lymph nodes. A distinctive sinusoidal pattern of growth was also seen.

Previous studies have shown that the biological and genetic features of KSHV/HHV-8 associated solid lymphomas closely mimic those of AIDS related PEL, suggesting that KSHV/HHV-8 associated solid lymphomas should be considered as a "tissue based or extracavitary variant of classic PEL." According to the KSHV/HHV-8 associated lymph node-based lymphomas in HIV seronegative patients described here may be part of the spectrum of HIV unrelated PEL, and may represent its solid lymphoma counterpart. These KSHV/HHV-8 associated solid lymphomas in HIV seronegative patients displaying a predilection for the lymph nodes and anaplastic large cell morphology are distinct clinical and pathological entities, although they share an identical biological base with classic PEL. However, because the large tumour cells showed an immunophenotypic profile of differentiated plasma cells with absent expression of B cell markers and strong reactivity for plasma cell associated antigens, such as CD38 and CD138, both the KSHV/HHV-8 associated lymphomas may be classified within the heterogeneous group of diffuse large B cell lymphomas with plasmablastic differentiation.

In conclusion, our study expands the spectrum of KSHV/HHV-8 associated lymphomas presenting primarily as solid or extracavitary based lesions, irrespective of HIV status. The awareness of the existence of this type of KSHV/HHV-8 associated lymphoma in HIV seronegative patients and the knowledge of its features should lead to the use of plasma cell reactive antibodies and antibodies to IgG chains when the common lymphoid markers are not demonstrable in an undifferentiated large cell tumour. In fact, in these cases, the negative immunostaining for CD20 and CD45 could erroneously exclude a lymphoma from the diagnostic alternatives.

It is evident that molecular diagnostic techniques, including analysis of viral infection and immunohistochemical studies, are of primary importance to define this lymph node based KSHV/HHV-8 associated lymphoma with anaplastic large cell morphology and plasmablastic immunophenotype occurring in HIV seronegative patients.

ACKNOWLEDGEMENTS

Authors’ affiliations
A Carbone, Department of Pathology, Centro di Riferimento Oncologico, Istituto Nazionale Tumori, IRCCS, via Venezian 1, Milano I-20133, Italy
A Gloghini, Diagnostic Immunohistochemistry and Molecular Pathology Unit, Centro di Riferimento Oncologico, Istituto Nazionale Tumori
E Vaccher, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto Nazionale Tumori
G Marchetti, Department of Pathology, Ospedali Riuniti - S. Chiara, Pisa I-56100, Italy
G Gaidano, Hematology Unit, Department of Medical Sciences and IRCAD, “Amedeo Avogadro” University of Eastern Piedmont, Novara I-28100, Italy
U Tirelli, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto Nazionale Tumori

The patients gave their informed consent for this case reports to be published.

REFERENCES
immunodeficiency virus-negative patient. Arch Pathol Lab Med
30. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory
31. Carbone PP, Kaplan HS, Musshoff K, et al. Report of the committee on non-
AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic
33. Pan L, Milligan L, Michaeli J, et al. Polymerase chain reaction detection of
Kaposi’s sarcoma-associated herpesvirus—optimized protocols and their
34. Carbone A, Cilia AM, Gloghini A, et al. Establishment of HHV-8-positive and
HHV-8 negative lymphoma cell lines from primary lymphomatous effusions.
35. Carbone A, Cilia AM, Gloghini A, et al. Establishment and characterization of
EBV-positive and EBV-negative primary effusion lymphoma cell lines
sequences throughout the spectrum of AIDS-related neoplasia. AIDS
monoclonal antibodies using immune complexes of alkaline phosphatase and
monoclonal antialkaline phosphatase (APAAP complexes). J Histochem
38. Tedeschi R, Dillner J, De Paoli P. Laboratory diagnosis of human herpes virus
dNA load by LMP2A determination in an Italian cohort of NPC patients. J Clin
BCL-6, and CD138/syndecan-1 defines novel histogenetic subsets of human
detecting plasma cell differentiation in routine sections. J Clin Pathol
43. Grandadam M, Dupin N, Calvez V, et al. Exacerbations of clinical symptoms in
human immunodeficiency virus type 1-infected patients with multicentric
Castleman’s disease are associated with a high increase in Kaposi’s sarcoma
herpesvirus DNA load in peripheral blood mononuclear cells. J Infect Dis
1997;175:1198–201.
44. Oksenhendler E, Carcelain G, Aoki Y, et al. High levels of human herpesvirus
8 viral load, human interleukin-6, interleukin-10, and C reactive protein
correlate with exacerbation of multicentric Castleman disease in HIV-infected
plasmablastic differentiation represent a heterogeneous group of disease
KSHV/HHV-8 associated lymph node based lymphomas in HIV seronegative subjects. Report of two cases with anaplastic large cell morphology and plasmablastic immunophenotype

A Carbone, A Gloghini, E Vaccher, G Marchetti, G Gaidano and U Tirelli

J Clin Pathol 2005 58: 1039-1045
doi: 10.1136/jcp.2005.026542

Updated information and services can be found at:
http://jcp.bmj.com/content/58/10/1039

These include:

References

This article cites 43 articles, 10 of which you can access for free at:
http://jcp.bmj.com/content/58/10/1039#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Immunology (including allergy) (1664)
- HIV/AIDS (55)
- Sexual transmitted infections (viral) (57)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/