STRAD in Peutz-Jeghers syndrome and sporadic cancers

W W J de Leng, J J Keller, S Luiten, A R Musler, M Jansen, A F Baas, F W M de Rooij, J J P Gille, F H Menko, G J A Offerhaus, M A J Weterman

Background/Aims: LKB1 is a tumour suppressor gene that is associated with Peutz-Jeghers syndrome (PJS), a rare autosomal dominant cancer predisposition syndrome. However, germline mutations in the LKB1 gene are found in only about 60% of patients with PJS, suggesting the existence of a second PJS gene. The STRAD gene, encoding an LKB1 interacting protein that activates LKB1, which subsequently leads to polarisation of cells, is an interesting candidate for a second PJS gene and a potential tumour suppressor gene in sporadic carcinomas.

Methods: The involvement of STRAD in 42 PJS associated tumours (sporadic lung, colon, gastric, and ovarian adenocarcinomas) was studied using loss of heterozygosity (LOH) analysis of eight microsatellite markers on chromosome 17, including TP53, BRCA1, and STRAD markers.

Results: Loss of the marker near the STRAD locus was seen in 13 of 29 informative cases, including all gastric adenocarcinomas. Specific LOH of the STRAD marker was found in four of 29 informative cases. For these patients all exons and exon–intron boundaries of the STRAD gene were sequenced, but no somatic mutations were identified. Furthermore, no germline STRAD mutations were found in 10 patients with PJS and family members without LKB1 germline mutation.

Conclusions: Despite the frequent occurrence of LOH in the STRAD region, these results indicate that inactivation of the STRAD gene is not essential in the sporadic adenocarcinomas studied, although it is possible that STRAD may be inactivated in different ways. In addition, no evidence was found for the hypothesis that STRAD is a second PJS susceptibility gene.
A study population of 42 sporadic adenocarcinomas consisting of eight ovarian adenocarcinomas, 10 cardia adenocarcinomas, 12 sigmoid adenocarcinomas, and 12 lung adenocarcinomas was selected from the pathology archives of the Academic Medical Centre (Amsterdam, the Netherlands). Formalin fixed, paraffin wax embedded tissue was used, and for each case non-neoplastic tissue was obtained from a tumour free lymph node or, when not available, from normal tissue.

Cell pellets from five lymphoblast cell lines from three patients with PJS and both parents of another patient with PJS (as a result of too little tissue from the patient) without known LKB1 germline mutations from the Erasmus University (Rotterdam, the Netherlands), in addition to genomic DNA from five patients with PJS from three families without LKB1 germline mutations from the Free University (Amsterdam, the Netherlands), were available from a study population of patients with PJS fulfilling the clinical criteria.

Microdissection and DNA isolation

Tumour tissue was microdissected from dewaxed haematoxylin stained 5 μm tissue sections. The percentage of tumour cells ranged from 70% to 90%. DNA was isolated using the Puregene DNA isolation kit (Genta Systems, Minneapolis, Minnesota, USA) according to the manufacturer’s protocol. DNA concentrations were measured using the PicoGreen double stranded DNA Quantitation kit (Molecular Probes, Leiden, the Netherlands).

Genomic DNA from cell pellets was isolated by proteinase K/sodium dodecyl sulfate precipitation, followed by phenol/chloroform extraction and ethanol precipitation.

Loss of heterozygosity

Eight markers were used for LOH analysis, two on chromosome 17p13.1 around the TP53 locus (markers TP53 and p53A1u) and six on the 17q arm: D17S791, D17S795, D17S797, markers D17S250 and D17S855 around BRCA1, and marker D17S944 near STRAD. Primer sequences of these markers can be found on the Genome Database website (www.gdb.org). The primer sequence of p53A1u is: forward, 5′-GAATCCGGGAGGATGAT-3′; reverse, 5′-AACAGCTCTTTTTAGGAGGAC-3′. The forward primers were FAM (6-carboxy-fluorescein) or TET (6-carboxy-4,7,2′,9′-tetrachlorofluorescein) labelled.

The polymerase chain reaction was performed using 10 mM dNTPs, 1.5 mM MgCl2, 0.5 mM of both primers, 0.2 U Taq polymerase (Life Technologies Inc, Carlesbad, California, USA), and at least 10 ng of DNA in a 20 μl reaction. The reaction was started with a three minute denaturation at 96°C, followed by 30 cycles of 45 seconds of denaturation at 96°C, one minute of annealing at temperatures varying between 52°C and 64°C, and a 45 second elongation step at 72°C; the programme ended with a five minute elongation step at 72°C in a PTC-100 or PTC-200 cycler (MJ Research Inc, Waltham, Massachusetts, USA).

Analysis was carried out using an automated ABI 377 or ABI 3100 sequencer (Applied Biosystems, Foster City, California, USA) with a Genescan™ 350ROX size standard (Applied Biosystems) and the manufacturer’s Genescan® 2.1 software.

Normal samples with two distinctly sized alleles of a particular marker were termed informative. For all informative markers, the allelic imbalance factor was calculated as described by Cawkwell et al.23 LOH was assumed if the allelic imbalance factor was greater than 1.6 or less than 0.6. Observed losses were confirmed to exclude induced LOH.

Immunohistochemistry

Immunohistochemistry (IHC) for p53 and LKB1 was performed on dewaxed and rehydrated 4 μm sections. Endogenous peroxidase activity was blocked with 0.3% H2O2 in methanol for 20 minutes. The slides were submerged in antigen retrieval solution (10 mM Tris/1 mM EDTA (pH 9.0) for p53 IHC and 0.01 M citrate (pH 6.0) for LKB1 IHC and heated for 10 minutes at 120°C. After cooling for 10 minutes, 5% normal goat serum in phosphate buffered saline was applied for 10 minutes. The sections were incubated for one hour with the primary antibody. Staining for p53 and LKB1 was carried out using the DO-7 and BP53-12 (Neomarkers, Freemont, California, USA; 1/2000 dilution) and anti-LKB1 (Cell Signaling Technology, Beverly, California, USA; 1/20 dilution) antibodies, respectively. The Powervision® polyclonal–horseradish peroxidase detection system (Immunovision Technologies, Daly City, California, USA) was used to visualise the antibody binding sites, with 3,3-diaminobenzidine as chromogen. Sections were counterstained with haematoxylin.

Sequence analysis

Table 1 shows the primers used to amplify the STRAD exons and exon–intron boundaries.

Polymerase chain reaction products were purified using the Qiagen PCR purification kit (Qiagen Benelux BV, Venlo, the Netherlands) and the sequencing reaction was performed using the ABI Big Dye Terminator cycle sequencing kit (Applied Biosystems) according to the manufacturer’s protocol. Samples were run on an ABI 3100 genetic analyser and analysed using Sequence Navigator.

RESULTS

To study the possibility that STRAD may function as a tumour suppressor gene, LOH analysis was performed on a panel of 42 sporadic adenocarcinomas that consisted of tumours described in patients with PJS or tumours of which variants occur in PJS. Adenocarcinomas of the lung, colon, and stomach have been described in patients with PJS.1 Ovarian adenocarcinomas were selected because one third of patients with the rare ovarian sex cord tumour with annular tubules have PJS.24 To identify losses of the entire chromosome arms and losses of the known tumour suppressor genes on chromosome 17, eight microsatellite markers located on chromosome 17 were used: markers flanking TP53 (17p13.1), BRCA1 (17q21), and STRAD (17q23.3), in addition to three other markers on 17q (fig 1). Furthermore, p53 IHC was performed to substantiate the LOH results for TP53.

As shown in fig 1, 13 of 29 patients showed LOH of the D17S944 marker near the STRAD locus. All informative gastric adenocarcinomas showed LOH of the STRAD marker, whereas only one of the 12 lung adenocarcinomas showed LOH. Four of the eight ovarian and seven of the 12 colon adenocarcinomas showed LOH. To investigate whether LOH near the STRAD gene was specific in these patients, the LOH status near the TP53 and BRCA1 loci was also assessed.

Three of eight ovarian adenocarcinomas showed retention of all informative markers on chromosome 17. In contrast, two cases showed LOH of all informative markers tested. In the other cases, TP53, BRCA1, or another gene might be affected except for ovarian adenocarcinoma 7 where STRAD seemed to be specifically lost.

Two of the 10 gastric adenocarcinomas showed retention of all chromosome 17 markers and another two showed LOH of all informative markers on chromosome 17. In most cases (> 70%) LOH of the TP53 markers was seen. The LOH results were supported by positive p53 immunohistochemistry suggestive of a TP53 mutation and loss of functional p53. Although all informative cases showed LOH for the STRAD
marker, only one gastric adenocarcinoma (stomach 8) might have specifically lost STRAD, because all other markers except for TP53 showed retention in this adenocarcinoma. In this case, the negative IHC indicated that a remaining TP53 wild-type allele might be present.

All colon adenocarcinomas showed LOH of one or more markers on chromosome 17. In three of the 12 cases all chromosome 17 markers showed LOH. Similar to the gastric adenocarcinomas, a high proportion (six of 12) of colon adenocarcinomas showed LOH of TP53. In three cases (colon 6, 7, and 11), the STRAD locus might be lost specifically because no LOH for TP53 or BRCA1 was identified in these cases. In cases 10 and 12, the LOH pattern suggested that genes other than TP53 and BRCA1 were affected.

The lung adenocarcinomas did not show LOH for the informative markers on chromosome 17. Retention of all markers was found in two of the 12 cases. Again TP53 LOH was found frequently (seven of 12 informative cases). Lung cases 9 and 12 showed LOH of one of the markers around the TP53 gene; however, no positive IHC indicative of a mutation in the remaining allele was found. None of the lung adenocarcinomas showed specific LOH near the STRAD locus; however, in lung adenocarcinoma case 1 either BRCA1 or STRAD might be lost.

In total, LOH analysis revealed five of 29 informative cases with specific LOH near the STRAD locus (ovary 7, stomach 4, and colon 6, 7, and 11). Mutational analysis of STRAD was used to investigate whether the second STRAD allele was inactivated. No mutations were found in the 13 exons or exon–intron boundaries. However, a single nucleotide polymorphism 62279118 C/T was identified in exon 2, 18 base pairs upstream of the start codon. Cases ovary 7 and colon 6 were heterozygous and a homozygous T allele was found in cases stomach 4, colon 7, and colon 11, whereas none of the patients was homozygous for the wild-type C allele.

Although LOH analysis showed LOH near the STRAD locus in 13 of the 29 sporadic tumours, no STRAD mutations were found in cases where this region appeared to be specifically affected. Because STRAD could also be inactivated in other ways and thus affect the stability or localisation of LKB1, IHC was carried out on all cases studied. LKB1 staining was in general relatively weak and varied between tumours. Tumours of the stomach and colon were on average more strongly positive than ovarian and lung adenocarcinomas. Staining was cytoplasmic and occasionally membranous. No nuclear staining, as would be expected in the case of dysfunctional STRAD, was observed.

Germline abnormalities of the LKB1 gene have been reported in about 60% of patients with PJS, with the cause of the syndrome being unclear in the remaining patients. The presence of a second disease locus has been proposed, but no second PJS gene has been identified to date. Because of the essential function of STRAD in activating LKB1, the question was raised whether STRAD might be a second PJS gene.

Therefore, STRAD mutation analysis was carried out in nine patients with PJS and one family member where no LKB1 germline mutation had been identified, suggesting that another gene may have caused the syndrome. Sequence analysis of exons and exon–intron boundaries revealed no mutations, although the above described single nucleotide polymorphism in exon 2 recurred in several patients. Of the 10 PJS family members, five were homozygous for the wild-type C allele, three were homozygous for the T allele, and two were heterozygous.

DISCUSSION

The association between loss of epithelial organisation and malignant progression in mammalian tumours has long been known, making disorganisation of cell architecture one of the primary diagnostic features of transformation. The function

Table 1

<table>
<thead>
<tr>
<th>Exon</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Tm (°C)</th>
<th>MgCl₂ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gggttgaggccgaggggctacggcagtaaac</td>
<td>cagccctccttggtgcgacacgtacgctcc</td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>tattgaaggaaccgtgtggaagg</td>
<td>cgtaaacaagctgattttgc</td>
<td>52</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>gctgcaagctgctacgggttggcgc</td>
<td>cggtaaagaggggcggctcc</td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>tggcttgacggtttggtgagttgcc</td>
<td>ggtggggttgggtgggtagtttgc</td>
<td>52</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>cggatgagaagaaggtctgttgag</td>
<td>ccggggtggtgggtggggctg</td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>ctttgtgctgttctgtgtgtgc</td>
<td>cgggttggtgcgtacggtacg</td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>7+8</td>
<td></td>
<td></td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>9</td>
<td>gggcggctcctggtgctgagcag</td>
<td>gggttcgcctcctggtgctgagcag</td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>ggctggggctcctggtgctcctgc</td>
<td>gggttcgcctcctggtgctgagcag</td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>ccggcgccagcggccgc</td>
<td>cctcctgctgctcctggtgctgagcag</td>
<td>65</td>
<td>1.25</td>
</tr>
<tr>
<td>12+13</td>
<td>ggctggggctcctggtgctcctgc</td>
<td>gggttcgcctcctggtgctgagcag</td>
<td>65</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Figure 1

Loss of heterozygosity (LOH) results for eight microsatellite markers on chromosome 17, including those near the STRAD, BRCA1, and TP53 loci, in addition to the results for p53 immunohistochemistry (IHC) for 42 sporadic ovarian, gastric, colon, and lung adenocarcinomas. Dark circles, LOH; open circles, retention; –, not informative; +, positive staining; and IC, inconclusive.
of LKB1 in regulating cell polarity should provide insight into a possible mechanism of tumour formation in patients with PJS. Loss of both LKB1 alleles in PJS tumours may lead to a disruption of polarity, ultimately resulting in transformation and tumour growth. LKB1 functions as a tumour suppressor gene in PJS and LKB1 aberrations have also been described in sporadic tumours. One third of sporadic lung adenocarcinomas showed inactivation of LKB1, and this was also seen to a lesser extent in sporadic biliary and pancreatic carcinomas.

In addition, somatic mutations of LKB1 have been reported in malignant melanoma. The link between LKB1 and cell polarity through STRAD raised the question of whether STRAD might also be involved in sporadic tumour formation. Because this involvement may be tumour specific, we selected four sporadic tumour types of which subtypes occur in patients with PJS to study LOH of STRAD and LKB1 expression.

To eliminate cases that show LOH of the entire chromosome or chromosome arm, in addition to LOH of the known tumour suppressor genes on chromosome 17, TP53 and BRCA1, the LOH status of eight microsatellite markers was assessed. LOH of the STRAD marker was found in 13 of 29 informative cases. Ten of the adenocarcinomas showed no LOH of the informative markers on chromosome 17 and another seven cases showed LOH of all informative markers on chromosome 17. LOH of chromosome 17 was most prominently present in the group of colon adenocarcinomas and least prominent in lung adenocarcinomas.

LOH near the TP53 locus was found in most gastric, colon, and lung adenocarcinomas (50–70%), whereas only two of the eight ovarian adenocarcinomas showed LOH. These results indicate that loss of TP53 is indeed a common event in tumour formation, as has been described previously for these tumours. LOH of TP53 was reported in approximately 60% of gastric adenocarcinomas. In lung cancer it has been shown that the short arm of chromosome 17 is one of the most frequently affected chromosomal regions, and there is solid evidence that the TP53 gene is a target for these deletions.

In colon carcinomas loss of chromosome 17p, including the TP53 locus, was described as a late event in the adenoma–carcinoma sequence. In ovarian tumours, LOH at the TP53 locus has been described in up to 81% of cases. In our study, we found LOH of TP53 in two of eight cases, indicating that in ovarian adenocarcinomas LOH of other genes may be more important than LOH at the TP53 locus.

“There are no indications that expression of the STRAD protein is aberrant in these sporadic adenocarcinomas, despite the high percentage of loss of heterozygosity at 17q.”

In ovarian carcinomas, inactivation of BRCA1 may occur more frequently. LOH of BRCA1 has been described in up to 50% of ovarian tumours. In our study, only one of eight ovarian adenocarcinomas showed LOH of both BRCA1 markers. In addition, only one case with LOH of BRCA1 was identified in the colon and lung adenocarcinomas in our study. LOH of the 17q21 region was reported in approximately 50% of colon and lung adenocarcinomas. Although in gastric adenocarcinomas a relatively high percentage of LOH at 17q21 was described, no BRCA1 mutations were found, which is indicative of the presence of another tumour suppressor gene.

According to Knudson’s two hit theory, tumour suppressor genes are inactivated by a recessive mutation in one allele and loss of the other wild-type allele. Frequent LOH is consequently considered to be an indicator of gene inactivation. Specific LOH of STRAD was found in five of our cases.

Mutational analysis did not identify mutations in the exons or intron-exon boundaries. Because the possibility remains that STRAD may be inactivated in another way, and this could result in the aberrant localisation of LKB1, LKB1 immunohistochemical staining was performed. However, no nuclear staining indicative of dysfunctional STRAD was observed. Based on these results, we concluded that there are no indications that expression of the STRAD protein is aberrant in these sporadic adenocarcinomas, despite the high percentage of LOH at 17q.

Take home messages

- Although there was a high occurrence of loss of heterozygosity in the STRAD region at 17q in patients with Peutz-Jeghers syndrome (PJS), inactivation of the STRAD gene is not essential in the sporadic adenocarcinomas studied in these patients, although it is possible that STRAD may be inactivated in different ways.
- In addition, no evidence was found for the hypothesis that STRAD is the second PJS susceptibility gene.
the LKB1 gene may be lower than previously estimated, other LKB1 interacting or activating proteins remain possible candidates for a second PJS gene.

ACKNOWLEDGEMENTS

We thank L. Schinning for technical assistance. This work was supported by the Netherlands Digestive Disease Foundation (WS01-03).

Authors’ affiliations

W W J de Leng, J J Keller, S Luiten, A R Musler, M Jansen, G J A Offerhaus, M A J Weterman, Department of Pathology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

A F Baas, Hubrecht Laboratory, Centre for Biomedical Genetics, 3854 CT Utrecht, The Netherlands

F W M de Rooij, Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, 3015 GE Rotterdam, The Netherlands

J J P Gille, F H Menko, Department of Clinical Genetics and Human Genetics, VU University Medical Centre, 1081 BT Amsterdam, The Netherlands

G J A Offerhaus, M A J Weterman, Department of Pathology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

G J A Offerhaus, M A J Weterman, W W J de Leng, J J Keller, S Luiten, A R Musler, M Jansen, Authors’ affiliations

Supported by the Netherlands Digestive Disease Foundation (WS01-03).

REFERENCES

STRAD in Peutz-Jeghers syndrome and sporadic cancers

W W J de Leng, J J Keller, S Luiten, A R Musler, M Jansen, A F Baas, F W M de Rooij, J J P Gille, F H Menko, G J A Offerhaus and M A J Weterman

J Clin Pathol 2005 58: 1091-1095
doi: 10.1136/jcp.2005.026013

Updated information and services can be found at:
http://jcp.bmj.com/content/58/10/1091

These include:

References
This article cites 40 articles, 12 of which you can access for free at:
http://jcp.bmj.com/content/58/10/1091#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Cancer: small intestine (32)
- Dermatology (222)
- Breast cancer (506)
- Molecular genetics (355)
- Pancreatic cancer (121)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/