ORIGINAL ARTICLE

IgM colocalises with complement and C reactive protein in infarcted human myocardium

P A J Krijnen, C Ciurana, T Cramer, T Hazes, C J L M Meijer, C A Visser, H W M Niessen, C E Hack

See end of article for authors’ affiliations

Correspondence to:
Dr P A J Krijnen, VU Medical Centre, Department of Pathology, Room 0E16, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands; paj.krijnen@vumc.nl

Accepted for publication 4 October 2004

Aims: Reperfusion of ischaemic myocardium after acute myocardial infarction (AMI) can induce ischaemia/reperfusion (I/R) injury, as a result of local activation of the complement system. C reactive protein (CRP) is involved in this activation. This study analysed the potential role of IgM in complement activation in the infarcted human myocardium.

Methods: Immunohistochemical analysis was carried out on heart specimens from 59 patients who died from AMI. Serial slides of frozen tissue from the infarction site were stained for IgM, complement factors C3d and C5b–9 (membrane attack complex), and CRP.

Results: IgM deposits were found on the plasma membrane, cross striations, and in the cytoplasm of jeopardised cardiomyocytes in infarcts of one to five days duration. IgM depositions were remarkably similar to those of CRP and both complement factors. The relative staining intensities of IgM and CRP varied greatly among patients.

Conclusions: Similar to CRP, IgM targets complement locally to jeopardised cardiomyocytes in the human heart after AMI. Localisation patterns and relative staining intensities suggest that IgM and CRP recognise similar epitopes in the ischaemic heart, but that the relative contribution of each protein to complement activation in the ischaemic myocardium differs among patients.

Reperfusion of the impaired myocardium after acute myocardial infarction (AMI) results in a local inflammatory response.1 This inflammatory response damages the ischaemic tissue, a phenomenon also designated ischaemia/reperfusion (I/R) injury. Prevention of this I/R induced inflammation has been shown to reduce the infarct size by as much as 50% in animal models,2 and may offer new therapeutic opportunities for patients with AMI. Hence, knowledge of the mechanisms of I/R injury in humans is warranted.

The complement system is an important mediator involved in experimental I/R injury in animals. In a rat model of reperfusion injury of ischaemic myocardium, prevention of complement activation resulted in a pronounced reduction of I/R related injury.3 In addition, there is preliminary evidence that the inhibition of complement by C1 inhibitor reduces infarction size by up to 57% in humans.4 These results point to complement as an attractive target for limiting I/R injury. However, the molecular basis of I/R induced complement activation is not completely understood.

“Prevention of ischaemia/reperfusion induced inflammation has been shown to reduce the infarct size by as much as 50% in animal models, and may offer new therapeutic opportunities for patients with acute myocardial infarction.”

Various molecules have been claimed to target activated complement to the ischaemic myocardium during I/R injury. One of these molecules is C reactive protein (CRP), which activates complement via the classical pathway.5,6 In rabbits, CRP was localised to the inflamed myocardium after AMI.7,8 Administration of human CRP in rats challenged with coronary artery occlusion enhances infarct size in a complement dependent manner.9 In myocardial tissue specimens from patients that died from AMI, CRP colocalises with complement,10 suggesting that in humans this acute phase protein contributes to complement activation in the ischaemic myocardium. This notion is supported by observations that during AMI the human heart contains increased amounts of activation products that specifically reflect complement activation induced by CRP.11

In mice, IgM was also shown to be involved in complement activation induced during I/R injury.12,13 In I/R models of the intestine and skeletal muscle, IgM deficient mice developed substantially less I/R injury than their wild-type littermates, and this injury was restored in the deficient mice by supplementation with normal murine IgM. The specificity of the IgM mediating I/R injury in mice is not known. It is also not known whether a similar IgM dependent mechanism occurs in humans during I/R. We hypothesised that in humans IgM might also contribute to ischaemic injury in the heart after AMI. Therefore, in our study we analysed tissue specimens from the hearts of patients who had died from AMI. These specimens were analysed for the presence of IgM, CRP, complement factor C3d, and complement factor C5b–9 of the membrane attack complex.

METHODS

Patients

Patients referred to the department of pathology, VU Medical Centre, Amsterdam, the Netherlands for necropsy were included in our study if this was performed within 24 hours of death, and when at necropsy they showed signs of a recently developed AMI—that is, on histochemical examination they had decreased lactate dehydrogenase staining (decoloration) of the affected myocardium. Our study was approved by the ethics committee of the VU Medical Centre, Amsterdam, and complied with the principles of the Declaration of Helsinki. Use of leftover material after autopsy was approved by the local ethics committee.

Abbreviations: AMI, acute myocardial infarction; BSA, bovine serum albumin; CRP, C reactive protein; I/R, ischaemia/reperfusion; mAb, monoclonal antibody; PBS, phosphate buffered saline; PLA2, phospholipase A2; PMN, polymorphonuclear leucocyte

Corresponded with the clinical course. Independently all slides for the infarct phase. Table 1 shows microscopic changes but with macroscopic lactate dehydrogenase staining patterns and were studied as internal non-infarcted controls. A control heart tissue sample from the left ventricle was obtained from a patient who died from a cause not related to heart disease. Before being prepared as cryosections, tissue specimens were stored at −196°C (liquid N₂). Frozen sections were mounted on to SuperFrost® Plus glass slides (Menzel-Gläser, Braunschweig, Germany).

Processing of tissue specimens

Myocardial tissue specimens were obtained from the infarcted zone and from remote sites of the healthy part of the heart. These remote sites showed normal lactate dehydrogenase staining patterns and were studied as internal non-infarcted controls. A control heart tissue sample from the left ventricle was obtained from a patient who died from a cause not related to heart disease. Before being prepared as cryosections, tissue specimens were stored at −196°C (liquid N₂). Frozen sections were mounted on to SuperFrost® Plus glass slides (Menzel-Gläser, Braunschweig, Germany).

Assessment of infarct phase

Microscopic criteria were used to estimate infarct duration and viability of cardiomyocytes in all myocardial tissue specimens. Because morphological judgment is more reliable with paraffin wax embedded slides, corresponding paraffin wax slides were also made. Jeopardised myocardium was characterised by the intensity of eosinophilic staining of involved myofibres, condensation, loss of nuclei, and cross striation. We characterised jeopardised myocardium without microscopic changes but with macroscopic lactate dehydrogenase decolourisation as an early phase infarct (phase 1), infiltration of polymorphonuclear leucocytes (PMNs) as a PMN phase infarct (phase 2), and infiltration of lymphocytes and macrophages and fibrosis as a chronic phase infarct (phase 3). Furthermore, patients showing typical changes of phase 3 morphology together with those of phase 1 morphology were classified as reinfarct early phase (phase 4). Patients with phase 3 morphology and phase 2 morphology were classified as reinfarct PMN phase (phase 5). Two investigators (PAJK and HWMN) judged and scored an anatomical localisation of the specific antibodies, as visualised by immunohistochemical staining. For the final scoring results, consensus was achieved by the two investigators.

Antibodies

Horseradish peroxidase conjugated rabbit polyclonal anti-human IgM antibody (American Qualex, San Clemente, California, USA) was used for immunohistochemical detection of IgM. Monoclonal antibodies (mAbs) against the complement factor C3d (mAb C3-15; subtype, IgG1) and against CRP (mAb 5G4; subtype, IgG2a) have been used previously for immunohistochemical studies. mAb aE11 (subtype, IgG2a; Dako, Carpinteria, California, USA) was used for the detection of complement factor C5b–9. The mAbs were stored at 1 mg/ml in phosphate buffered saline (PBS), pH 7.4. Irrelevant mAbs (two IgG1, one IgG2a, and one IgM) were used as negative controls, and tested at concentrations similar to those used for the anti-complement and anti-CRP mAbs. These controls yielded negative results.

Immunohistochemistry

Frozen sections (5 μm thick) were mounted on to glass slides, dried for one hour by exposure to air, and fixed in acetone ("Baker analysed reagent"; Mallinckrodt Baker, Deventer, the Netherlands). After rinsing in PBS, the slides were incubated at room temperature for 10 minutes with normal swine serum (for IgM), normal rabbit serum (for complement and CRP) (both Dakopatts, Glostrup, Denmark), or 5% (wt/vol) bovine serum albumin (BSA; Boehringer, Mannheim, Germany) in PBS (for C5b–9), diluted 1/10 (normal swine serum) or 1/50 (normal rabbit serum) in 1% (wt/vol) BSA in PBS (PBS-BSA). Incubation of the slides with specific antibody solutions (diluted in PBS-BSA) was performed for 60 minutes except for mAb aE11, which was incubated overnight at 4°C (the polyclonal antibody against IgM was diluted 1/400; mAb C3-15 was diluted 1/1500; mAb 5G4 was diluted 1/300; mAb aE11 was diluted 1/50). The slides were washed for 30 minutes with PBS and slides stained with mAbs were incubated with horseradish peroxidase-conjugated rabbit antimouse immunoglobulins (Dakopatts), diluted 1/25 in PBS-BSA except for mAb aE11, which was detected using EnVision (Dako). Thereafter, the slides were washed again in PBS and incubated for three minutes in 0.5 mg/ml 3,3’-diaminobenzidine tetrahydrochloride (Sigma, St Louis, Missouri, USA) in PBS, pH 7.4, containing 0.01% (vol/vol) H₂O₂, washed again, counterstained with haematoxylin for one minute, dehydrated, cleared, and finally mounted.

Colocalisation of IgM, C3d, C5b–9, and CRP, in addition to the relative staining intensities of IgM and CRP were evaluated in each patient. Furthermore, the percentage of positive surface area was determined, by subdividing the total area of the slide into four equal parts and then estimating the percentage of positive area in each visual field. Finally, an average percentage of positive surface area was calculated from these subdivisions. The slides stained with the polyclonal antibody against IgM, or with mAbs C3-15, 5G4, or aE11 were serial slides.

Two investigators (PAJK and HWMN) assessed the percentage of positive surface area. A p value (two sided) of less than 0.05 was considered to represent a significant difference.

Statistics

Statistical analysis was performed with the SPSS statistical program (Windows version 9.0). To evaluate whether observed differences were significant, paired or non-paired t tests were used when appropriate. A p value (two sided) of less than 0.05 was considered to represent a significant difference.

RESULTS

Immunohistochemical deposits of IgM were found on cardiomyocytes that were morphologically characterised as jeopardised (fig 1). IgM deposits were found on the plasma membrane and were strikingly intense in different areas of myocardial tissue specimens.
the macroscopic infarction zone (fig 1A–C), on cross striations (fig 1A), and in the cytoplasm (fig 1A) of cardiomyocytes. We used an IgM subtype antibody against Leu7 (which is not present in cardiomyocytes of the left ventricle of the adult heart) as a negative control, and the results were negative (fig 1G).

Focal IgM deposits were found inconsistently on the endothelium of blood vessels in the heart of patients who died of AMI (not shown). This endothelial IgM staining was independent of the phase of infarction, because within each phase a subgroup of patients had no IgM staining of the endothelium, whereas others had varying amounts of IgM positive vessels. Moreover, endothelial staining for IgM was not limited to the infarction area, but also occurred at adjacent sites and remote areas of the healthy part of the heart.

Figure 1 Localisation of IgM on cardiomyocytes in myocardial infarct and colocalisation of IgM, C3d, C5b–9, and C reactive protein (CRP) in the human heart. Localisation of IgM on cardiomyocytes in the heart of a patient who had died from acute myocardial infarction (AMI): (A) IgM deposited on the plasma membrane (arrow I), on cross striations (arrow II), and in the cytoplasm (arrow III) of jeopardised cardiomyocytes (original magnification, ×630); (B, C) high power view of IgM staining of the plasma membrane of jeopardised cardiomyocytes (arrows IV, V, and VI) (original magnification, ×1000). (D, H) Localisation of IgM; (E) localisation of complement factor C3d; (F) localisation of CRP; (I) localisation of complement factor C5b–9 in the heart of a patient who died after AMI (original magnification, ×100). (G) Negative staining using an IgM subtype monoclonal antibody against Leu7 (negative control).
IgM deposits on cardiomyocytes were found in the infarcted myocardium of patients with PMN phase infarcts and PMN phase reinfarcts. No depositions of IgM were found in the infarcted myocardium of patients with early or chronic phase infarcts or early reinfarcts. IgM deposits were never found in the healthy, remote myocardium. In addition, no IgM was found on the cardiomyocytes of a heart from a patient who died of non-heart disease related causes. As discussed earlier, no staining with IgG1 or IgG2a was found on cardiomyocytes. The replacement of specific antibody with IgG1 or IgG2a isotype controls yielded negative results in the cardiomyocytes.

Colocalisation of IgM, complement, and CRP

To test for the putative colocalisation of IgM, complement, and CRP in the infarcted myocardium, we stained serial slides of the tissue specimens. IgM (fig 1D, H) colocalised with complement factor C3d (fig 1E), complement factor C5b–9 (fig 1I), and CRP (fig 1F)—the staining patterns of IgM, CRP, and complement were strikingly similar. As was found for IgM, no complement or CRP deposits occurred at sites remote from the infarction area.

We also determined the extent of the deposits by estimating the mean surface area occupied by cardiomyocytes that were positive for IgM, complement, or CRP as a percentage of the total surface area of the slides in the infarcted region (fig 2). The IgM/complement/CRP positive surface area in patients with PMN phase infarcts or PMN phase reinfarcts was significantly greater than that of patients with early phase infarcts (p = 0.001) or early phase reinfarcts (p < 0.02). Moreover, this IgM/complement/CRP positive area tended to be greater in PMN phase reinfarcts than in PMN phase infarcts (p = 0.54 for IgM, p = 0.58 for complement; p = 0.70 for CRP). To analyse the correlation between deposits of IgM, CRP, and complement, we designed scatter plots in which the IgM/complement/CRP positive surface area of each patient was plotted, irrespective of infarct phase. This analysis revealed a linear relation between the sizes of the IgM and complement deposits (fig 3A; R = 0.999; p = 0.000), those of IgM and CRP (fig 3B; R = 0.994; p = 0.000), and those of complement and CRP (fig 3C; R = 0.996; p = 0.000).
activated C3d and C5b–9, indicative of membrane attack. We found complete colocalisation of IgM with irregular staining of IgM in the infarcted human myocardium, which was a feature of jeopardised cells, so that structures exposed in the flip flopped membrane of jeopardised cardiomyocytes might serve as ligands for CRP and IgM. Phosphorylcholine is a good candidate for such a structure because CRP is known to bind to phosphatidylcholine and particularly to lyso-phosphatidylcholine via this chemical group. Indeed, a considerable amount of lyso-phospholipid is generated in the infarcted myocardium. In addition, we have recently revealed that type II secretory phospholipase A2 (PLA2), which generates lyso-phospholipids, enhances the binding of CRP to the plasma membrane of ischaemically challenged rat cardiomyoblasts. Furthermore, we have found that secretory PLA2 colocalises in the infarcted human myocardium with complement and CRP, and therefore also with IgM. A similar specificity (preferential binding to lyso-phosphatidylcholine) has recently been described for anti-phosphorylcholine IgM. This IgM failed to recognise phosphatidyl lipids but did bind to lyso-phosphatidylcholine on murine apoptotic T cells, and this binding was dependent on calcium independent PLA2 activity. It was also revealed that increased IgM binding to the apoptotic cells was accompanied by complement activation. In addition to lyso-phospholipids, oxidised phospholipids in membranes may also expose phosphorylcholine in a way that allows the binding of IgM and CRP, and increased amounts of oxygen radicals are known to be generated in myocardial ischaemia. Its supposed specificity for phosphorylcholine is consistent with the idea that this IgM is natural IgM. Taken together, a mechanism emerges in which increased production of oxygen radicals together with enhanced PLA2 activity generates binding sites in the membrane of cardiomyocytes in the ischaemic myocardium, which promotes the binding of both natural IgM and CRP, and which ultimately leads to activation of complement and subsequent irreversible injury to the tissue. We found differences in the staining intensity of CRP and IgM between patients, suggesting that IgM and CRP recognise and even compete for the same epitopes on the membranes of ischaemic cardiomyocytes. Serum levels of natural IgM vary between people. In addition, there are variations in the magnitude of the CRP response among patients suffering from AML. Unfortunately, we did not have the opportunity to analyse the blood samples of the patients included in our study. Hence, the relation between circulating IgM and CRP values and the relative contribution of either protein to complement activation in the ischaemic myocardium remains to be established in further studies.

Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and mixed connective tissue disorders are associated with the deposition of IgM and CRP in ischaemic injury in humans.

The deposition of IgM showed a remarkable colocalisation with that of complement and CRP, strongly suggesting that the deposited IgM had bound to the same ligands in the ischaemic heart as CRP. It appears that these ligands are only exposed during the PMN phase of (re)infarction, because deposition of CRP and IgM was rarely seen during the other phases. Currently, we can only speculate about the nature of these ligands. However, microscopic evaluation revealed that the plasma membrane of the ischaemic cardiomyocytes in particular harboured the ligands for IgM and CRP, because these proteins bound to the plasma membrane of cardiomyocytes in the infarcted zone. In an earlier study, we showed that apolipoprotein H, which binds to phosphatidylserine in flip flopped membranes, colocalises with CRP in ischaemic myocardium. Loss of plasma membrane integrity is a feature of jeopardised cells, so that structures exposed in the flip flopped membrane of jeopardised cardiomyocytes might serve as ligands for CRP and IgM. Phosphorylcholine is a good candidate for such a structure because CRP is known to bind to phosphatidylcholine and particularly to lyso-phosphatidylcholine via this chemical group. Indeed, a considerable amount of lyso-phospholipid is generated in the infarcted myocardium. In addition, we have recently revealed that type II secretory phospholipase A2 (PLA2), which generates lyso-phospholipids, enhances the binding of CRP to the plasma membrane of ischaemically challenged rat cardiomyoblasts. Furthermore, we have found that secretory PLA2 colocalises in the infarcted human myocardium with complement and CRP, and therefore also with IgM. A similar specificity (preferential binding to lyso-phosphatidylcholine) has recently been described for anti-phosphorylcholine IgM. This IgM failed to recognise phosphatidyl lipids but did bind to lyso-phosphatidylcholine on murine apoptotic T cells, and this binding was dependent on calcium independent PLA2 activity. It was also revealed that increased IgM binding to the apoptotic cells was accompanied by complement activation. In addition to lyso-phospholipids, oxidised phospholipids in membranes may also expose phosphorylcholine in a way that allows the binding of IgM and CRP, and increased amounts of oxygen radicals are known to be generated in myocardial ischaemia. Its supposed specificity for phosphorylcholine is consistent with the idea that this IgM is natural IgM. Taken together, a mechanism emerges in which increased production of oxygen radicals together with enhanced PLA2 activity generates binding sites in the membrane of cardiomyocytes in the ischaemic myocardium, which promotes the binding of both natural IgM and CRP, and which ultimately leads to activation of complement and subsequent irreversible injury to the tissue. We found differences in the staining intensity of CRP and IgM between patients, suggesting that IgM and CRP recognise and even compete for the same epitopes on the membranes of ischaemic cardiomyocytes. Serum levels of natural IgM vary between people. In addition, there are variations in the magnitude of the CRP response among patients suffering from AML. Unfortunately, we did not have the opportunity to analyse the blood samples of the patients included in our study. Hence, the relation between circulating IgM and CRP values and the relative contribution of either protein to complement activation in the ischaemic myocardium remains to be established in further studies.

Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and mixed connective tissue disorders are associated with the deposition of IgM and CRP in ischaemic injury in humans.
Take home messages

- Both C reactive protein (CRP) and IgM target complement locally to jeopardised cardiomyocytes in the human heart after acute myocardial infarction
- Localisation patterns and relative staining intensities suggest that IgM and CRP recognise similar epitopes in the ischaemic heart, but that the relative contribution of each protein to complement activation in the ischaemic myocardium differs among patients

REFERENCES

5. Yolancis JE, Kaplan MH. Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes: requirement for human C1q. *J Immunol* 1974;113:9–17
IgM colocalises with complement and C reactive protein in infarcted human myocardium

J Clin Pathol 2005 58: 382-388
doi: 10.1136/jcp.2004.022988

Updated information and services can be found at:
http://jcp.bmj.com/content/58/4/382

These include:

References
This article cites 43 articles, 21 of which you can access for free at:
http://jcp.bmj.com/content/58/4/382#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Immunology (including allergy) (1664)
- Ischaemic heart disease (42)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/