A study to determine plasma antioxidant concentrations in patients with Barrett’s oesophagus

D M Clements, D A Oleesky, S C Smith, H Wheatley, D A Hullin, T J Havard, D J Bowrey

A n epidemiological link between antioxidant deficiency and squamous cell carcinoma of the oesophagus has been established, most notably in China.1–2 Furthermore, antioxidant supplementation has been shown to produce modest reductions in the risk of progression of squamous dysplasia in this high risk population.3

“We undertook our current study to evaluate the hypothesis that patients with Barrett’s oesophagus are deficient in antioxidants compared with patients with reflux who have no evidence of Barrett’s oesophagus.”

The role of antioxidants in adenocarcinoma of the oesophagus is unclear. The principal risk factors for this cancer subtype are gastro-oesophageal reflux disease4 and increased body mass index.5–8 Ten studies have examined the diets of patients with oesophageal adenocarcinoma by means of structured questionnaires.9–16 Although the conclusions of these studies differed slightly, in general, patients were found to have lower intakes of antioxidants, citrus fruits, and raw vegetables compared with control populations. Two studies have examined selenium values in patients with Barrett’s oesophagus and concluded that high concentrations of this antioxidant were associated with a reduced risk of progression from metaplasia to carcinoma.17–18

No study to date has compared antioxidant concentrations in patients with Barrett’s oesophagus, the precursor lesion for adenocarcinoma, and lesser grades of oesophageal injury. Therefore we undertook our current study to evaluate the hypothesis that patients with Barrett’s oesophagus are deficient in antioxidants compared with patients with reflux who have no evidence of Barrett’s oesophagus.

PATIENTS AND METHODS
Plasma antioxidant profiles were determined for a prospectively enrolled cohort of subjects attending the endoscopy suite at the Royal Glamorgan Hospital, Llantrisant, UK, during the period May to September 2003. Our study was approved by the Bro-Taf local research ethics committee (protocol 03/5011) and the Royal Glamorgan Hospital research and development board. Each patient provided written informed consent for venepuncture.

Because antioxidants may act as reverse acute phase reactants,19 patients with occult inflammatory processes were excluded on the basis of either a raised C reactive protein concentration (> 10 mg/litre) or hypoalbuminaemia (< 32 g/litre). Additional exclusion criteria were the presence of gastroduodenal ulceration and a history of pancreatitis or previous foregut surgery, other than cholecystectomy.

Patients were divided into the following study groups:

(1) 36 patients (33 men, three women) with Barrett’s oesophagus (defined by endoscopic columnar lined oesophagus and intestinal metaplasia on biopsy), mean age 57 years (range, 39–85);

(2) 32 patients (20 men, 12 women) with Los Angeles grade B or C erosive oesophagitis, mean age 59 years (range, 35–77);

(3) 35 patient controls (15 men, 20 women) free of reflux symptoms who had normal endoscopic appearances in the oesophagus, stomach, and duodenum, mean age 49 years (range, 20–72).

Sample size determination
In a previous study, we identified significant differences in the antioxidant concentrations between patients with chronic pancreatitis and healthy control subjects,20 and the magnitude of the differences was in excess of one standard deviation. For our current study, we assumed that the magnitude of the differences between Barrett’s and control patients would be more modest, in the order of 0.75 standard deviations. Assuming a significance concentration of 5% and a power of 80%, equal groups of 30 patients would be required.

Assay details
The biochemical parameters assessed were plasma concentrations of:

- the trace elements copper, selenium and zinc;
- vitamins A, C, and E;
Dietary inventories were completed by patients and antioxidant intake calculated based upon the known content of each food substance. These reports suggested a protective effect for diets rich in citrus fruits, certain vegetables, and several antioxidants, notably β carotene and vitamin C.

Two studies from the same institution of patients with Barrett’s oesophagus identified low selenium concentrations as a risk factor for progression to adenocarcinoma. Rudolph et al evaluated selenium concentrations in patients with Barrett’s oesophagus enrolled in a surveillance programme. They found that low selenium concentrations were associated with an increased risk of progression to high grade dysplasia, loss of wild-type p53, and aneuploidy. No association was seen between low selenium concentrations and loss of the wild-type p16 gene, an early event in carcinogenesis, leading the authors to speculate that low selenium concentrations are a late event in the development of oesophageal adenocarcinoma.

A recent Cochrane review examining the potential role of antioxidant supplementation in the prevention of gastrointestinal malignancy found no evidence of a protective effect, with the exception of a modest benefit for selenium. It should be stressed that the study groups were heterogeneous and included patients with hepatocellular, colorectal, oesophageal, gastric, and pancreatic cancers.

Take home messages

- Patients with Barrett’s oesophagus were deficient in certain antioxidants—they had significantly lower plasma concentrations of selenium, vitamin C, β cryptoxanthine, and xanthophyll than the other groups.
- It is possible that antioxidant supplementation could reduce the mortality risk for glandular dysplasia and adenocarcinoma in these patients and appropriate studies are needed to explore this issue.
central to the cellular defence mechanism against oxidative
damage—they catalyse the breakdown of hydrogen peroxide
and fatty acyl lipid peroxides, in the presence of reduced
glutathione, to water and the corresponding alcohols. Such
peroxides are a source of potentially damaging free radicals,
which can cause peroxidation of polyunsaturated fatty acids
in the cell membrane. The toxic oxygen derivatives, which are
neutralised by the antioxidants, are produced by normal
cellular metabolic activity and by a variety of injurious
agents.23

Our main findings were that patients with Barrett’s
oesophagus had significantly lower plasma concentrations
of the antioxidants selenium, vitamin C, β cryptoxanthine,
and xanthophyll compared with patient controls. What is the
therapeutic potential of these observations? More information
is available on squamous dysplasia and neoplasia,
nobly from China. The epidemiology of squamous cancer
in high incidence regions of China (Linxian province)
supports an association with antioxidant deficiency.12 Large
scale antioxidant supplementation studies in this region
revealed modest reductions in the mortality risk from
oesophageal or gastric cardia malignancy.1 It is an appealing
concept that the same will hold true for glandular dysplasia
and adenocarcinoma.

Table 3 Carotenoid concentrations

<table>
<thead>
<tr>
<th></th>
<th>Barrett’s oesophagus (n = 36)</th>
<th>Erosive oesophagitis (n = 32)</th>
<th>Patient controls (n = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Carotene (μmol/l)</td>
<td>0.05 (0.04–0.06)</td>
<td>0.05 (0.04–0.06)</td>
<td>0.05 (0.04–0.06)</td>
</tr>
<tr>
<td>b Carotene (μmol/l)</td>
<td>0.28 (0.24–0.32)</td>
<td>0.30 (0.26–0.34)</td>
<td>0.32 (0.27–0.37)</td>
</tr>
<tr>
<td>β Cryptoxanthine (μmol/l)</td>
<td>0.06 (0.05–0.08)</td>
<td>0.10 (0.08–0.13)</td>
<td>0.08 (0.07–0.10)</td>
</tr>
<tr>
<td>Lycopene (μmol/l)</td>
<td>0.32 (0.26–0.38)</td>
<td>0.28 (0.20–0.35)</td>
<td>0.26 (0.21–0.31)</td>
</tr>
<tr>
<td>Xanthophyll (μmol/l)</td>
<td>0.35* (0.27–0.44)</td>
<td>0.55 (0.41–0.69)</td>
<td>0.48 (0.33–0.63)</td>
</tr>
</tbody>
</table>

Values shown are mean (95% confidence interval).
*p = 0.008 v oesophagitis, **p = 0.002 v oesophagitis.

REFERENCES

1 Nomura AM, Ziegler RG, Stemmermann GN, et al. Serum micronutrients and
supplementation on the prevalence of histological dysplasia and early cancer
of the esophagus and stomach: results from the dysplasia trial in Linxian,
5 Lagergren J, Bergstrom R, Nyren O. Association between body mass index
6 Tretli S, Roelsahm TE. Height, weight and cancer of the esophagus
8 Cheng KK, Sharp L, McKinney PA, et al. A case–control study of esophageal
9 Kabat GC, Ng SK, Wynder EL. Tobacco, alcohol intake, and diet in relation to
10 Palli D, Bianchi S, Decarli A, et al. A case–control study of cancers of the
14 Zhang ZF, Kurtz RC, Yu GP, et al. Adenocarcinomas of the esophagus and
15 Mayne ST, Risch HA, Dubrow R, et al. Nutrient intake and risk of subtypes of
16 Terry P, Lagergren J, Hansen H, et al. Fruit and vegetable consumption in the
17 Moe GL, Kristal AR, Levine DS, et al. Waist-to-hip ratio, weight gain, and
dietary and serum selenium are associated with DNA content flow cytometry
18 Rudolph RE, Vaughan TL, Kristal AR, et al. Serum selenium levels in relation to
markers of neoplastic progression among persons with Barrett’s esophagus.
19 Hawker FH, Stewart PM, Smith PJ. Effects of acute illness on selenium status.
20 Morris-Stiff GJ, Bowrey DJ, Davies M, et al. The antioxidant profiles of
21 Cameron AJ. Barrett’s esophagus. In: Castell DO, Richter JE, eds. The
preventing gastrointestinal cancers. The Cochrane Database of Systematic
23 Bowrey DJ, Morris-Stiff GJ, Punts MCA. Selenium deficiency and chronic
A study to determine plasma antioxidant concentrations in patients with Barrett’s oesophagus

D M Clements, D A Oleesky, S C Smith, H Wheatley, D A Hullin, T J Havard and D J Bowrey

J Clin Pathol 2005 58: 490-492
doi: 10.1136/jcp.2004.023721

Updated information and services can be found at:
http://jcp.bmj.com/content/58/5/490

These include:

References
This article cites 21 articles, 6 of which you can access for free at:
http://jcp.bmj.com/content/58/5/490#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Oesophageal cancer (54)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/