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ABSTRACT
N-myc downstream regulated gene 1 (NDRG1) has been
well characterised to act as a metastatic suppressor in a
number of human cancers. It has also been implicated
to have a significant function in a number of
physiological processes such as cellular differentiation
and cell cycle. In this review, we discuss the role of
NDRG1 in cancer pathology. NDRG1 was observed to be
downregulated in the majority of cancers. Moreover, the
expression of NDRG1 was found to be significantly lower
in neoplastic tissues as compared with normal tissues.
The most important function of NDRG1 in inhibiting
tumour progression is associated with its ability to
suppress metastasis. However, it has also been shown to
have important effects on other stages of cancer
progression (primary tumour growth and angiogenesis).
Recently, novel iron chelators with selective antitumour
activity (ie, Dp44mT, DpC) were shown to upregulate
NDRG1 in cancer cells. Moreover, Dp44mT showed its
antimetastatic potential only in cells expressing NDRG1,
making this protein an important therapeutic target for
cancer chemotherapy. This observation has led to
increased interest in the examination of these novel
anticancer agents.

INTRODUCTION
N-myc downstream regulated gene 1 (NDRG1) (also
known as Drg1, RTP, Rit42, PROXY-1 or Cap43) has
been well described as a metastasis suppressor in a
number of cancers including colon, prostate and
breast cancers.1–3 The NDRG1 gene is a member of
the human NDRG family, which also comprises
NDRG2, NDRG3 and NDRG4.4–7 Chromosome
mapping studies have demonstrated that the NDRG1
gene is located on chromosome eight and encodes
a 3 kb mRNA that is translated into a 43 kDa
protein.1 4 8 9 The NDRG family of proteins belongs
to the α/β hydrolase group of enzymes, although it is
notable that the NDRG1 protein lacks a hydrolytic
catalytic site and is deficient in hydrolytic enzyme
activity.10–12 This observation suggests that the gene
has been modified by convergent evolution to obtain
the same fold for a specific purpose.
NDRG1 is a phosphorylated protein that contains

five calmodulin kinase 2 phosphorylation sites, three
serine phosphorylation sites, a casein kinase II site,
five myristoylation sites, three protein kinase C phos-
phorylation sites, one thioesterase site, one tyrosine
phosphorylation site and one phosphopantotheine
attachment site.13 Furthermore, NDRG1 has been
shown to be phosphorylated by upstream kinases like
serum/glucocorticoid regulated kinase 1 and glycogen
synthase kinase 3 (which are essential Ser/Thr kinase
family proteins).14 The role of phosphorylation at

numerous sites on the NDRG1 protein is still
unknown, but may be related to the numerous physio-
logical functions of NDRG1.15 The N-terminus of
NDRG1 protein consists of two myc boxes (MBI and
MBII), which are crucial for the protein’s function,
while the central region consists of MBIII (involved in
cell transformation and apoptosis) and MBIV (for
apoptosis induction, transformation and G2
arrest).16–18

Of interest, NDRG1 cDNA contains multiple
CpG islands at its 50 end, suggesting that DNA
methylation can control NDRG1 expression.19 The
NDRG1 gene has three hypoxia inducible factor 1
(HIF-1) binding sites, with one situated in its pro-
moter and the remaining two in its 30 untranslated
region,20 indicating that NDRG1 may be regulated
by HIF-1 through its binding sites in the untrans-
lated region.21

DISTRIBUTION OF NDRG1 IN CELLS AND TISSUES
The expression of NDRG1 mRNA is ubiquitous
among human tissues, but higher levels are found
in the prostate, brain, kidney, placenta and intes-
tinal tissues.1 4 However, the NDRG1 protein is
mainly found in the epithelium, which suggests that
it may have a specific function related to these
types of cells.22

At the cellular level, the NDRG1 protein is pre-
dominantly cytoplasmic in nature.22 However, this
localisation can vary between different cell types
(eg, intestinal and breast epithelia express
membrane-associated protein, whereas prostate epi-
thelial cells demonstrate nuclear localisation of
NDRG122). In some cell types, mitochondrial local-
isation is also observed.22 Collectively, these findings
suggest that NDRG1 functions in a tissue-specific
manner.1 However, some studies have observed that
NDRG1 distribution is not tissue-specific.4 23

Moreover, analysis using PSORTII software also pre-
dicts that NDRG1 is primarily a cytoplasmic protein
(47.8%), followed by its localisation in the nucleus
(26.1%) and mitochondrion (8.7%).
Membrane-associated NDRG1 protein has been

mostly found adjacent to adherens junctions, where
intermediate and microfilament bundles insert into
these structures.22 This finding is suggestive of the
involvement of NDRG1 in cell adhesion and this
may be important for its ability to upregulate the
levels of E-cadherin that plays a crucial role in
forming the adherens complex.22

FUNCTION OF NDRG1 AND ITS REGULATION
NDRG1 and cellular differentiation
The exact function(s) of NDRG1 still remain
elusive, but numerous recent studies have suggested
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that this molecule is involved in cellular differentiation (see
figure 1).8 24 Using a variety of cell types, including keratino-
cytes, U937 myelomonocytic cells, colonic cancer cells, mast
cells, renal cells, monocytes/macrophages and prostate cancer
cells, revealed that differentiation positively correlated with
increased NDRG1 expression induced by peroxisomal
proliferator-activated receptor γ.25–28 The role of NDRG1 in
differentiation was further illustrated in experiments performed
on rat peripheral glioma cells (D6P2T), which were induced to
differentiate by the cAMP phosphodiesterase inhibitor isobutyl-
methyl xanthine.29 This treatment resulted in a cessation of pro-
liferation which coincided with a significant increase in
NDRG1.29

Of interest, genes which are known to suppress cellular differ-
entiation (eg, Hod, S100a10, connective tissue growth factor,
ectonucleotide pyrophosphatase/phosphodiesterase family
member 3 and secreted phosphoprotein 1) were shown to be
downregulated by NDRG1, resulting in increased cellular differ-
entiation.8 In addition, NDRG1 induces Wnt suppression which
restores the epithelial cell–cell adhesion complex (E-cadherin-
β-catenin).30 This is crucial for maintaining epithelial cell
morphology, polarity and motility30 that is linked to a differen-
tiated phenotype. The effect of NDRG1 on differentiation is
probably linked to its effects on a variety of other molecular
targets and these are described below.

NDRG1 and cell cycle control
Studies have noted that the expression of NDRG1 is biphasic
throughout the cell cycle, peaking during the G1 and G2/M
phases and decreasing to its lowest level during S phase.31 This
finding indicates a potential role in G0/G1 arrest potentially
through altered expression of p21WAF1/cip1 and cyclin-
dependent kinase 1 and 4.31 32 Interestingly, NDRG1 was found
to upregulate p21WAF1/cip1 protein levels in prostate and lung

cancer cells.33 However, NDRG1 expression had no effect on
proliferation or the cell cycle of these latter cells; rather, it was
able to inhibit cell migration.33 Potentially, this may indicate a
cell type dependent response.

NDRG1 is also a microtubule-associated protein mainly
located in centromeres that could be involved in p53-dependent
spindle checkpoint and in mitosis.1 34 The main evidence for
the role of NDRG1 in its role in the maintenance of euploidy is
derived from studies performed using p53-negative cancer cell
lines.35 When these cells were exposed to the microtubule
inhibitor, taxol, NDRG1 expression was induced and the popu-
lation of cells in M phase of the cell cycle was increased.35

Notably, phosphorylated NDRG1 has been found at the ends
of microtubule bundles during late telophase.36 This observation
suggests that NDRG1 could be involved in the attachment of
mitotic spindles at the point of abscission, as well as cytokinesis
regulation.36 Overexpression of NDRG1 has also been demon-
strated to decrease expression of the Wnt-responsive gene,
cyclin D1, which would inhibit cell cycle progression.37 In
summary, NDRG1 appears to have a variety of effects on cell
cycle control molecules that appear in some cases to be cell
type-dependent.

NDRG1 and the stress response
High levels of NDRG1 usually reflect exposure of cells to condi-
tions inducing stress.32 Expression of NDRG1 is induced by a
range of stress inducing stimuli such as hypoxia, homocysteine,
nickel, androgens, calcium and iron depletion.38–40 Hypoxia is
an essential factor in solid tumour formation and is known to
induce the generation of mitochondrial reactive oxygen
species.41 It also activates HIF-1α, EGR1, nuclear factor-κB and
other transcription factors involved in tumour angiogenesis and
invasion.41–43 The HIF-1 transcription factor permits quick
adaptation and survival when cells are exposed to reduced

Figure 1 Regulation and functions of
NDRG1 in cancer. The oncogenes,
c-Myc and N-Myc, are often found to
be upregulated in cancers and are
known to suppress NDRG1. NDRG1 is
upregulated by transcription factors
HIF-1 and AP1, which are known to be
deregulated in some tumours. NDRG1
is upregulated by p53, an apoptotic
protein known to be mutated or
reduced in variety of cancers. The
tumour suppressor, phosphatase and
tensin homologue (PTEN), and stress
response gene, EIF3a, are also shown
to positively regulate NDRG1
expression in cells. NDRG1 can
promote cellular differentiation leading
to suppression of tumour progression.
NDRG1 suppresses angiogenesis via
suppression of vascular endothelial
growth factor (VEGF) and IL-8. It also
mediates suppression of cellular
proliferation. NDRG1 inhibits
metastatic progression of cancer cells
via inhibition of epithelial to
mesemchymal transition (EMT).
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oxygen concentrations44 and plays an essential role in regulating
hypoxia-responsive genes including NDRG1 (see figure 1).6 45 46

Studies have shown that NDRG1 upregulation can occur via
HIF-1α-dependent and -independent mechanisms.46–48 In add-
ition, NDRG1 was demonstrated to be regulated by Erg-1 under
hypoxic conditions.42

Eukaryotic initiation factor 3a (eIF3a) is believed to be a con-
stituent of stress granules, which are intracellular complexes
formed on exposure to stressors such as hypoxia and oxidative
stress.49 These granules act as triage centres, which selectively
allow translation of proteins essential for the stress response.50

A recent study has shown that eIF3a positively regulated the
expression of NDRG1 under iron-depleted conditions.40 This
again re-emphasises the role of NDRG1 as an important stress
response protein.

NDRG1 and PTEN
The NDRG1 protein is involved in regulating the negative
feedback-loop linking the phosphoinositide 3-kinase (PI3K)
pathway and the tumour suppressor, phosphatase and tensin
homologue (PTEN).26 This observation was first noted in pros-
tate cancer cells where PTEN expression is often lost due to low
NDRG1 levels, which results in increased disease progression.26

In fact, when PTEN levels were upregulated in prostate and
breast cancer cells, NDRG1 expression was also increased in a
dose- and time-dependent manner.51 On the other hand, inhi-
biting PTEN expression using siRNA led to a reduction in
NDRG1 levels.51 Interestingly, recent studies demonstrated that
NDRG1 can also upregulate PTEN protein levels in pancreatic
cancer cells.26 Hence, these latter molecules positively regulate
each other.

In cancer cells, the balance in the PI3K/PTEN feedback-loop
is frequently lost, which leads to increased PI3K signalling and
reduced PTEN levels.26 This feedback-loop can be rebalanced
by upregulating NDRG1, which subsequently increases PTEN
expression, leading to inhibition of PI3K signalling and phos-
phorylated protein kinase B (pAKT), halting tumour
progression.26 52

NDRG1 and p53
The tumour suppressor gene, p53, which induces NDRG1 in a
cell type-specific manner, may control cell proliferation, caspase
activation and apoptosis (see figure 1).38 39 Activation of
NDRG1 occurs as a result of p53 binding to its promoter.38

This was revealed in the colon cancer cell line (DLD-1), where
NDRG1 was upregulated after p53 induction.38 It was also
shown that the expression of NDRG1 is induced by DNA dam-
aging agents in a process which is dependent on p53.1 38

Moreover, it was also observed that NDRG1 was required for
the induction of p53-mediated apoptosis in the colon cancer
cell line, DLD-1.38 Conversely, other studies involving lung
cancer cell lines have shown a lack of correlation between
NDRG1 expression and DNA damage even though p53 is upre-
gulated.29 46 These observations potentially indicate cell- and
tissue-specific regulation of NDRG1 via p53.

In addition, EGR1 can upregulate p53 which can, in turn,
positively regulate both p21WAF1/cip1 and NDRG1.12 52–54

Moreover, as mentioned earlier, NDRG1 itself can also upregu-
late p21WAF1/cip1.33 Subsequently, p21WAF1/cip1 inhibits cell
cycle progression and promotes apoptosis by inducing G1/S
arrest.33 55 This latter molecule can also inhibit cell migration
and metastasis of cancers.33

NDRG1 and MYC
Overexpression of N-myc and c-myc genes represses NDRG1
expression by binding to the N-myc binding motif close to the
initiation promoter (see figure 1).29 56 This was shown in mice
where the mouse homologue of NDRG1 (Ndr-1) was transcrip-
tionally repressed by the N-myc:Max heterodimer, which binds
to the Ndr-1 promoter region.57 Moreover, in IMR-32 and
NGP neuroblastoma cells, N-myc suppression by retinoids pro-
moted NDRG1 expression.29 As a result, retinoids can induce
cellular differentiation, which could increase NDRG1 levels by
other pathways.29 Interestingly, nickel upregulates NDRG1 in
some cell types and also inhibits N-myc expression.29

ROLE OF NDRG1 IN PRIMARY TUMOUR GROWTH,
METASTASIS AND ANGIOGENESIS
It is notable that NDRG1 is widely expressed in normal cells
and tissues.22 In contrast, NDRG1 was observed to be downre-
gulated in the majority of cancers.2 A range of prostate cancer
specimens analysed by immunohistochemistry have shown that
NDRG1 expression is lower in neoplastic when compared with
adjacent normal tissues.19 This finding was further substantiated
by the discovery of an inverse relationship between the Gleason
grade of the cancer with NDRG1 expression levels, where a
higher grade corresponds to poorly differentiated tumours with
low NDRG1 protein expression.58 59 This finding is also
observed in colon cancer where the expression of NDRG1
declines as normal colonic epithelium progresses to carcin-
oma.60 The decline in NDRG1 expression was revealed to cor-
relate with a shorter 5-year survival rate in colonic cancer
patients.60

Role of NDRG1 in primary tumour growth
The NDRG1 protein has a significant role in inhibiting primary
tumour growth. Increased expression of NDRG1 resulted in a
reduction in tumour microvascular density, invasion depth and
histopathological grading.61 This molecule also reduced prolifer-
ation rates in bladder cancer cell lines by up to 70%.62 The
primary growth of the human breast, prostate and bladder
cancer cell lines was inhibited by NDRG1, leading to suppres-
sion of anchorage-independent growth in soft agar.24 In con-
trast, other studies have shown that NDRG1 overexpression had
no effect on pancreatic cancer cell growth in vitro, as well as in
colon and prostate tumours.19 63 In addition, no correlation was
observed between size or histological grade of breast cancer and
NDRG1 expression.51

Role of NDRG1 as a metastasis suppressor
The NDRG1 gene is likely to be involved in metastasis suppres-
sion due to its negative association with tumour metastasis and
cell migration.64–67 In fact, in vivo studies demonstrated that
NDRG1 significantly inhibited the metastasis of rat prostate
cancer AT6.1 cells to the lungs.19 Further studies subsequently
demonstrated that NDRG1 inhibited metastasis by reducing
cell–matrix and cell–cell adhesion in the AT6.1 cells in vitro.8

Interestingly, in an investigation using breast cancer cells, upre-
gulation of E-cadherin by NDRG1 reduced the motility of these
cells (see figure 1).63 These studies suggested that NDRG1 mod-
ulates important adhesion molecules such as E-cadherin to
inhibit metastasis. These early observations were further con-
firmed by studies demonstrating a significant increase in the
adherens junction proteins E-cadherin and β-catenin at the
plasma membrane in response to NDRG1 overexpression.37 In
fact, while transforming growth factor-β (TGF-β) reduced
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E-cadherin and β-catenin levels in these DU-145 prostate and
HCT116 colon cancer cells, NDRG1 was able to significantly
inhibit this effect.37 On the other hand, silencing NDRG1 using
siRNA in these cells led to a marked reduction in E-cadherin
and β-catenin membrane levels.37 Moreover, NDRG1 overex-
pression also markedly inhibited cell migration and invasion in
these cells in vitro.37 Hence, NDRG1 promotes the formation
of the adherens junctions, leading to increased cell–cell adhesion
and reduced cell migration and invasion, resulting in reduced
metastatic potential.

Interestingly, the NDRG1 protein is involved in different
roles in metastatic and non-metastatic cells.4 39 NDRG1 expres-
sion inhibited cell proliferation in metastatic (H1299-NDRG1)
cell line, but had no effect in non-metastatic (DLD-1-NDRG1)
cells.38 In human prostate cancer cells, NDRG1 expression
levels were much higher in organ-confined tumours than in
lymph node or bone metastases.19 Thus, NDRG1 can be used
as a molecular biological marker for tumour prognosis.6 65 This
was confirmed in studies showing that NDRG1 may predict
early invasion, metastasis and detect hypoxic regions within the
tumour mass of gastric cancer cells, as well as determining
patient prognosis.6 65

In metastatic cancer cells, actin is polymerised to form stress
fibres which help in cellular migration and metastasis.68 It has
been shown that phosphorylation of myosin light chain 2
(pMLC2) by ROCK1 has an important role in the formation of
stress fibres (see figure 2).69 In a recent study, it has been shown
that NDRG1 can inhibit the ROCK1/pMLC2 pathway, leading
to suppression of stress fibre assembly and rearrangement. This
acts as an additional pathway via which NDRG1 can modulate
its antimetastatic effects.70

Role of NDRG1 in angiogenesis
The NDRG1 gene has an important role in regulating angiogen-
esis (see figure 1).67 Interestingly, the mRNA levels of the two
angiogenic factors, vascular endothelial growth factor (VEGF-1)
and interleukin-8 (IL-8), were reduced in cells when NDRG1

was overexpressed.61 Pancreatic cancer cells with high NDRG1
levels had a significant reduction in both VEGF-1 and IL-8
protein, as well as reduced matrix metalloproteinase-9 activity
which leads to modulation of angiogenesis.71–73 In addition,
NDRG1 expression was negatively correlated to tumour micro-
vascular density via inhibition of nuclear factor-κB, chemokines
and VEGF-A.74 Conversely, other studies demonstrate that in
cervical cancer patients the enhanced tumour expression of
NDRG1 correlated with a higher tumour microvessel density.24

These differences could again reflect the tissue-specific function
of NDRG1.

TARGETING NDRG1 AS A NOVEL ANTIMETASTATIC
THERAPY
The expression of NDRG1 can be markedly increased in mul-
tiple cancer types in vitro and in vivo by novel anticancer
agents, namely, the thiosemicarbazone iron chelators of the
di-2-pyridylketone thiosemicarbazone class, di-2-pyridylketone
4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and
di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone
(DpC; figure 3A).33 37 46 These compounds are unique new
generation ligands that unlike typical chelators (eg, desferrioxa-
mine, deferisirox, deferiprone; figure 3B) do not induce whole
body iron depletion at optimal doses.75–77 In fact, the mechan-
ism of action of these ligands involves the binding of iron and/
or copper and the formation of a redox active complex that gen-
erates cytotoxic reactive oxygen species.78–80 This dual activity
of these agents has been termed the ‘double punch’ as they
deplete cells of iron that is critical for proliferation, while at the
same time forming a redox-active iron/copper complexes that
damages cancer cell lysosomes and this induces apoptosis and
cell death (figure 3C).78–80

Targeting iron in cancer cells is a novel approach to the treat-
ment of this disease. Indeed, iron is an essential element that is
necessary for cell proliferation.81 Moreover, cancer cells, which
proliferate rapidly, have higher requirements for iron than
normal cells.82 This is reflected by the increased expression

Figure 2 The role of NDRG1 in cancer progression and iron chelation therapy. (A) Cancer pathology. TGF-β can promote tumourigenesis via
upregulation of Snail/slug pathway. Increased Snail/slug inhibits membrane bound E-cadherin and increases nuclear translocation of β-catenin. This
leads to increased epithelial to mesemchymal transition (EMT) followed by metastasis. Similarly, WNT-signalling pathway can also promote
metastasis by increasing the levels of nuclear β-catenin. ROCK1/pMLC2 modulates actin-filament polymerisation, stress fibre assembly and
formation, leading to increased cellular motility and metastasis. (B) Iron chelation chemotherapy. Novel iron chelators (Dp44mT, DpC) upregulate
NDRG1 levels, which leads to inhibition of Snail/slug, Wnt-signalling and ROCK1/pMLC2 pathways and, thus, inhibit metastasis.
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of the transferrin receptor 1 on cancer cells, which is the
primary mechanism of iron uptake.82 83 Iron is also a critical
requirement for many signalling cascades, such as HIF-1α,84

JNK/P38/MAPK,84 p53/p21/Cyclin D184 and Wnt/β-catenin.85

Hence, considering their diverse molecular targets, iron chela-
tors may be a promising new therapeutic approach to reverse or
prevent cancer metastasis.

The novel iron chelator, Dp44mT, was able to maintain the
expression of epithelial markers, E-cadherin and β-catenin,
attenuating the TGF-β-induced epithelial to mesemchymal tran-
sition in prostate and colorectal cancer cells.37 Moreover, this
effect was mediated via NDRG1 upregulation and subsequent
inhibition of the SMAD/Snail and Wnt pathways (see figure
2).37 Furthermore, in our studies, we demonstrate that both
Dp44mT and DpC inhibit ROCK1/pMLC2-modulated actin-
filament polymerisation, stress fibre assembly and formation via
a mechanism involving NDRG1 activation (see figure 2).70 A
recent study showed marked suppression in metastasis upon
treatment with Dp44mT in vivo.30 Furthermore, these investiga-
tors observed a significant reduction in the ability of Dp44mT
to inhibit metastasis in xenografts of NDRG1-knockdown

MDA-MB-231-BoM cells, demonstrating the importance of
NDRG1 as a therapeutic target in Dp44mT-mediated metastasis
suppression.30 These results highlight the potential of novel iron
chelators as inhibitors of cancer metastasis in tumours that are
regulated by NDGR1.

SUMMARY
NDRG1 has been shown to play an important role in both
physiological as well as pathophysiological conditions. It plays a
critical role in cancer progression, mainly due to its inhibitory
effects on cancer metastasis, via its interaction with key signal-
ling pathways, such as PI3K and WNT. Moreover, novel iron
chelators (ie, DpC) have shown to upregulate NDRG1 and have
been demonstrated to have potent antitumour activity. This has
led to an interest in the use of these novel ligands as potential
chemotherapeutics. In conclusion, further elucidation of the
molecular mechanisms that underlie the antimetastatic effects of
NDRG1 will facilitate the development of new therapies for
inhibiting cancer metastasis.

Figure 3 Line drawings of the
structures of: (A) Dp44mT and DpC;
(B) desferrioxamine (DFO), deferisirox
(Exjade) and deferiprone.
(C) Schematic illustrating the double
punch mechanism that is mediated by
thiosemicarbazone chelators of the
DpT class. The Dp44mT ligand can
bind tumour iron or copper, designated
as metal (M) in the schematic. The
Dp44mT-M complex (M=Fe(III) or
Cu(II)) can redox cycle upon interaction
with cellular reductants (eg, NADH) to
generate the reduced complexes,
namely, either Dp44mT-Fe(II) complex
or Dp44mT-Cu(I) complex. These
complexes can subsequently react with
oxygen via the Fenton reaction to form
reactive oxygen species that mediate
oxidative insults to the cell.
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Key messages

▸ NDRG1 has important function in cancer pathology, mainly
by its ability to inhibit metastasis.

▸ Novel iron chelators (DpC, Dp44mT) can upregulate
NDRG1expression via hypoxia inducible factor-1α-dependent
and independent mechanisms.

▸ NDRG1 is required for the anti-metastatic activity of
Dp44mT.

▸ Novel iron chelators have shown the potential to be
developed as chemotherapeutics against metastatic cancers.
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