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ABSTRACT
Metastatic colorectal cancer harbouring a mutation in
codon 12 or 13 of the KRAS gene does not benefit from
therapy with antibodies targeting the epidermal growth
factor receptor (EGFR). The implementation of
community KRAS testing is generating a rapid flow of
new data that have implications for the pathologist and
testing guidelines besides the physician. Therefore, it
seems timely to draw together the threads of this large
body of information in order that pathologists can be
knowledgeable partners in the multidisciplinary process
of targeted cancer therapy and to help refine current
testing guidelines. This review addresses (1) the most
relevant methodological and technical aspects of KRAS
testing in terms of sample site (primary/metastatic), test
specimens (resection/biopsy/cytology) and the diverse
molecular methods available; (2) the issues related to
daily practice, namely, the timing of the test, its
turnaround time and the quality control procedures; and
(3) the evidence related to the relationship between
KRAS genetic intratumoural heterogeneity, clinical
sensitivity of mutational detection tools and anti-EGFR
treatment outcome. Hopefully, in the near future,
elucidation of the potential of biomarker panels and of
the mechanisms underlying primary and acquired
resistance to anti-EGFR therapy will refine even further
personalised treatment regimens for patients with
metastatic colorectal cancer.

INTRODUCTION
The epidermal growth receptor (EGFR) is a major
therapeutic target in metastatic colorectal cancer
(mCRC).1 Cetuximab, a human–mouse chimeric
monoclonal antibody (subtype IgG1), and panitu-
mumab, a fully human monoclonal antibody
(subtype IgG2κ), are directed against the EGFR
and can be used as monotherapy or combined with
chemotherapy.1 Retrospective subset analyses of the
data from phase II and III clinical trials strongly
suggest that patients whose tumour has KRAS
mutations in codon 12 or 13 do not benefit from
these drugs irrespective of whether they are used as
monotherapy2 3 or in combination with chemo-
therapy.4–7 KRAS gene testing is mandatory in
mCRC patients in the USA, Europe and Japan,8

and the use of cetuximab and panitumumab is
restricted to codon 12 and 13 wild-type tumours.
However, an optimal KRAS testing procedure has
yet to be established.9 10 In fact, procedures vary
across laboratories, and the routine approach to
KRAS testing differs between Europe (most tests
are performed in centralised laboratories) and the
USA (in-house testing in most institutions).

Since the introduction of community KRAS
testing and quality control programmes in
2008,10 11 a large body of data has accumulated on
the various facets of this complex topic. Hence, it
seems the time is now ripe to review the technical,
clinical and therapeutic aspects of KRAS mutation
testing also to enable pathologists to be knowledge-
able partners in targeted cancer therapy. In add-
ition, a review of the most recent data related to
sample selection and processing, the analytical and
clinical sensitivity of testing methods and quality
control programmes will also help to improve test
guidelines.

THE SAMPLE
Primary and metastatic sites
KRAS mutation status assessment is generally
requested by the oncologist upon diagnosis of
mCRC. According to current guidelines,9 10 biopsy
of the metastatic site is not necessary because the
test can be reliably performed on the archival tissue
blocks containing the surgical resection specimen
of the primary tumour. However, when metastatic
tissue is available, testing can be performed on
either sample. It is well established that KRAS
mutation is an early event in colorectal tumours
and is highly stable during the course of the
disease. Indeed, many studies investigated whether
testing the primary tumour predicts the mutation
status of the corresponding metastasis, and the
concordance was reported to be either almost
complete 12–27 or complete.28–33 A recent
meta-analysis that included 986 paired primary and
distant metastases confirmed these findings.34 A
slight difference in concordance has been reported
depending on the site of metastasis. In fact, liver
metastases nearly always (96.4%) share the KRAS
mutational status of the primary tumours, as shown
by Knijn et al35 in 305 paired samples. Primary and
lymph node metastases34 and primary and lung
metastases36 are less often concordant. The dis-
cordance in the latter study was 32.4%, which is
clinically relevant. Consequently, this should be
taken into account in case of isolated lung metasta-
sis from colorectal cancer.

Resection samples and endoscopic biopsies
Diagnostic biopsy specimens represent a tiny frag-
ment of the primary colorectal tumour, which
raises the question: ‘Are they sufficiently representa-
tive of the tumour to be used to make treatment
decisions?’. The same KRAS point mutation was
identified in the biopsy and in the corresponding
resection specimens in 12/12 cases.37 In a larger
series (n=125) of paired samples, concordance of
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KRAS mutational status between biopsy and resection specimens
was very high regardless of the method used.38 More recently, a
high concordance between biopsies and resection specimens was
reported also for other early driver mutations such as BRAF,
PIK3CA and TP53.39 Accordingly, genome-wide sequencing
showed that somatic mutations of ‘early’ driver genes are
present in all colorectal tumour cells.40

Neoadjuvant chemoradiation therapy, commonly used in
rectal cancers, leads to complete tumour regression in approxi-
mately 10%–20% of patients and to an almost complete
tumour regression in a further 20%–30% of cases.41 Although
chemotherapy or radiotherapy do not alter the genetic status of
cancer cells,42 KRAS genotyping on post-treatment samples is
challenged by the paucity of neoplastic cells.43 In these circum-
stances, highly sensitive assays coupled with laser capture micro-
dissection that selects a pure population of tumour cells while
avoiding contamination from surrounding tissue reduce the pos-
sibility of missing a mutation in the KRAS gene.

Cytological samples
In patients with mCRC whose primary tissue is not available or
is inadequate, KRAS testing can be reliably performed on cyto-
logical specimens taken from metastatic sites.30 To evaluate the
suitability of cytology for KRAS testing, we and others have per-
formed validation studies on paired cytological and histological
samples. We found a 92.3% concordance rate,44 which is
similar to the results reported by Pang et al (87.5%)45 and
Bozzetti et al (88%).46 Rapid on-site evaluation of the harvested
material by a cytopathologist increases the sample adequacy
rates for KRAS testing.34 Cytological samples may also be
obtained by touch imprinting fresh tumour tissue against glass
slides47 or by applying Whatman Flinders Technology
Associates (FTA) cards48—a procedure that results in tumour-
rich samples and shortens the KRAS assay turnaround time.49

THE METHOD
The KRAS test is performed in the pathologist’s laboratory or in
a referral centre. In both cases, the pathologist selects the
sample and the tissue area to test with the aim of obtaining a
percentage of tumour cells acceptable for the assay being used.
The College of American Pathologists (CAP)9 and the European
Society of Pathology (ESP)10 have recommended standardised
morphologic sample assessment prior to DNA extraction.
Genotyping laboratories using a low-sensitivity technique

should receive paraffin-embedded material containing more
than 30% of neoplastic cells.50 51 It is noteworthy that the
determination of the percentage of tumour cells is very much
‘observer-dependent’. In an external quality assessment review,
the same specimen was deemed to contain 10%–20% of
tumour cells by one laboratory and 90%–100% by others;
hence, the observer variability on a single case can be as high as
80%.52 Depending on the complexity of histology and on the
density of the tumour, the DNA extracted from four (resection
specimens) or five (biopsy specimens) 3 μm thick serial sections
is usually sufficient. The fifth section serves to confirm that sec-
tions 2–4 contain tumour tissue. Neutral-buffered formalin is
the preferred fixative, although this is not strictly necessary, as
shown in countries in which processing of colectomy specimens
involves fixation with unbuffered formalin.53 In the absence of
a paraffin tissue block, DNA extracted from H&E-stained tissue
sections can be used as a starting material.54 The ESP and CAP
do not recommend any one single method. In fact, each institu-
tion decides whether to validate a laboratory-based assay or to
adopt commercial kits.55 The decision is usually based on the
equipment, experience and personnel available.52 In figure 1,
results from different methods of KRAS mutation detection are
reported.

Many molecular methods are available; all include an initial
PCR amplification of the KRAS target sequences. For assays that
are not approved for in vitro diagnostic (IVD) use by the
European Community or by the US Food and Drug
Administration (FDA), the performance characteristics of the
assay must be determined and validated by the clinical labora-
tory before implementation. Kamel-Reid et al56 illustrated how
to validate the performance characteristics of KRAS mutation
assays by assessing accuracy, precision, analytical sensitivity and
specificity, reportable range and reference range. As a general
rule, a mutation frequency of 40% and a cluster of three muta-
tion types (p.G12D, p.G12V and p.G13D) in primary tumours
and metastases can be considered benchmarks for routine KRAS
analyses.57

KRAS mutational status by direct sequencing
Direct sequencing of PCR products is considered a reliable and
low-cost standard method for KRAS mutation detection.58 As a
general rule, samples featuring tissue areas with more than 30%
of neoplastic cells, possibly selected by manual macrodissec-
tion,59 60 can be reliably tested by direct sequencing. These

Figure 1 Different methods of KRAS mutation detection, including direct sequencing (A and B), TheraScreen (C and D), pyrosequencing (E and F)
and high-resolution melting analysis (G and H). For each method, the top panel (A, C, E and G) shows a wild-type result, while the bottom panel
(B, D, F and H) shows (arrows) a mutant (G13D) result.
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represent the vast majority of specimens analysed in the routine
setting. In fact, in a recent review of 578 cases referred to our
laboratory, we found that 528 (91.3%) specimens contained
more than 30% of neoplastic cells.61 Besides the percentage of
neoplastic cells, the limit of detection (LOD) of this technique
partly depends on the specific mutation and on the experience
of the person interpreting the data.62 When a KRAS mutation is
identified by direct sequencing, both mutant and wild-type
alleles are seen on the sequencing electropherograms. In a
minority of cases, the electropherogram shows low-intensity
peaks that are suggestive of KRAS mutations, but mutations
must be verified with a more sensitive technique.63 64

In some instances, even if the tumour has not been microdis-
sected, the mutant allele may appear to be in great excess of the
wild-type allele.65 The mutant allele may become dominant
when deletion of the wild-type allele and/or chromosome 12
hyperploidy or KRAS amplification leads to mutant allele-specific
imbalance (MASI).65 66 Tumours harbouring extra copies of
mutant KRAS alleles can also be identified by pyrosequencing.64

KRAS MASI correlates with a worse overall survival (OS), espe-
cially among patients with KRAS codon 13 mutations.66

Identification of KRAS mutational status by high-resolution
melting analysis
High-resolution melting analysis (HRMA) is a rapid, highly sen-
sitive and cost-effective, in-tube screening tool. It does not iden-
tify the specific mutation present but detects DNA sequence
variations based on specific sequence-related melting profiles of
PCR products.67–71 Positive results need confirmation,70 which
is usually obtained by direct sequencing.68–73 However, in cases
of a low concentration of the mutant allele, the results of direct
sequencing and the more sensitive HRMA can be discord-
ant.68 69 72–74 We recently reported that HRMA identified
mutations in 4/50 patients that had been missed by direct
sequencing.75 Thus, tools more sensitive than direct sequencing
are required to confirm positive HRMA samples, and, in
routine diagnostics, positive HRMA results may be verified with
commercial kits such as the TheraScreen KRAS Mutation
Detection Kit (DxS-Qiagen). Ultra-deep pyrosequencing of
KRAS amplicons with the 454 GS Junior system was recently
found to be cost-effective in confirming HRMA KRAS
genotyping.67

Identification of KRAS mutation status with the
TheraScreen kit
The TheraScreen KRAS Mutation Detection Kit (DxS-Qiagen),
recently approved for IVD by the FDA, detects the seven most
frequent somatic mutations in codons 12 and 13. The LOD of
mutant alleles is between 1% and 5% depending on DNA
quality.53 Each DNA sample is added to eight separate reaction
tubes, and Scorpion probes detect fluorescence when the specific
primer fully matches the target sequence. The PCR analysis is
carried out in less than 2 h, and the presence of a KRAS muta-
tion is scored by threshold cycle cut-off values provided by the
kit manufacturer.

This technology has a high analytical efficiency.59 76–78 Tol
et al60 obtained concordant results with sequencing and the
TheraScreen assay in 486/510 (95.3%) samples. The few dis-
crepancies observed reflected the higher sensitivity of
TheraScreen in samples with a tumour cell percentage
below 30.60 Similarly, in the cohort of 213 patients tested by
Dono et al,79 the sequencing and TheraScreen methods were
highly concordant (97.6%). Carotenuto et al,63 Pinto et al80

and Franklin et al59 confirmed that the TheraScreen kit is more

sensitive than direct sequencing. However, in the series reported
by Tol et al,60 4 out of 510 samples (1%) were false negative
with the TheraScreen assay because the sequence alterations
were not covered by the kit.

Several studies showed that KRAS mutation status assessed by
TheraScreen has clinical significance. Indeed, this technology
was used in several retrospective analyses that showed the effi-
cacy of anti-EGFR therapy in relation to KRAS status.2 6 7 81

More recently, tumour samples from 394 of the 572 patients
enrolled in the National Cancer Institute of Canada Clinical
Trials Group (NCIC CTG) CO.17 phase 3 trial were retrospect-
ively tested by the TheraScreen assay, and the data relative to
the OS of wild-type patients supported the clinical utility of the
kit.61 82 83

KRAS mutational status by cobas
The cobas KRAS Mutation Test (Roche Molecular Systems) is a
robust, accurate TaqMelt real-time PCR test. Fifty nanograms of
DNA extracted from a single paraffin section are required.84

The test detects 19 mutations in codons 12, 13 and 61 with an
LOD of 5%.85 The accuracy of the test is similar to that of mas-
sively parallel pyrosequencing.84 The final result is ‘mutated in
codons 12 and 13’ without indication of the exact mutation.
However, codon 12 and 13 mutations may differ in terms of
their clinical impact. Indeed, evidence derived retrospectively in
a small cohort (n=32) of chemotherapy-refractory mCRC
patients suggests that patients with tumours harbouring G13D
mutations (the third most frequent KRAS mutation in CRC)86

may benefit from anti-EGFR antibody therapy.87 Prescreening
with cobas associated with additional TaqMan mutation charac-
terisation is an easy and reliable approach for routine diagnostic
purposes.88

KRAS StripAssay
User-friendly test strips can promote the widespread implemen-
tation of KRAS testing. The KRAS StripAssay combines
mutant-enriched PCR based on peptide nucleic acid clamping
and reverse hybridisation of amplification products to nitrocellu-
lose test strips that contain a parallel array of oligonucleotide
probes targeting 10 frequent mutations in codons 12 and 13
of the KRAS gene.89 90 This assay is more sensitive (analytical
sensitivity 1%) than direct sequencing91 and is relatively fast
(<6 h excluding DNA isolation). The StripAssay is a practical
alternative to direct sequencing when only a few tumour cells
are available. However, it is recommended to confirm
StripAssay-positive samples using a new StripAssay or another
assay that has a similar analytical sensitivity.92

KRAS mutational status by pyrosequencing
Pyrosequencing requires only10 ng of DNA and involves light
emission at each position after the incorporation of a nucleotide
into the synthesised DNA complementary to the region of inter-
est, which is usually less than 50 nucleotides.93 Various studies
have consistently shown that pyrosequencing has an LOD of 5%
for mutant alleles.64 94 95 Both in-house developed assays 95–98

and CE-IVD-marked PyroMark kit (Qiagen)77 have been exten-
sively used to detect KRAS mutations in codons 12, 13 and 61.
Pyrosequencing can require confirmatory testing in rare
instances, that is, when suboptimal DNA results in a low signal
strength.77
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Analysis of KRAS mutational status by next-generation
sequencing
Thanks to next-generation sequencing (NGS) technologies, it is
now possible to screen simultaneously multiple mutations in
multiple genes in a single test run. Detection of targeted onco-
gene mutations, including KRAS mutations, in CRC formalin-
fixed, paraffin-embedded specimens by NGS has an accuracy of
96.1% (compared with Sanger sequencing) and 99.6% (com-
pared with real-time PCR methods).99 Accurate quantitative
results in mutant allelic frequency can be achieved at a higher
throughput scale with KRAS amplicons that are represented in
9× 103 to 12×103 reads per sample.67 The technical obstacles
to the use of NGS in clinical practice are currently being
addressed.100 101

PRACTICE
KRAS testing is increasingly being used to guide treatment selec-
tion for patients with mCRC. In a survey of 14 countries of
Europe, Latin America and Asia, the frequency of KRAS testing
of mCRC increased from 3% in 2008 to 69% in 2010.8

Knowledge of the patient’s KRAS mutation status seems also to
influence the choice of the targeted agent. In fact, patients with
wild-type KRAS were more frequently treated with cetuximab,
while patients with a KRAS mutant tumour or a KRAS
unknown mutant tumour were more often treated with bevaci-
zumab.8 Similar data were obtained in a US Community
Setting.102 In a more recent observational French study, 433/
583 (81.1%) mCRC patients underwent KRAS testing.103 It was
mainly requested by oncologists (n=195; 45.5%) and gastroen-
terologists (n=133; 31.0%).103

The KRAS testing turnaround time is influenced by the
sequential involvement of several different health professional
rather than by the type of molecular procedure.104 A rational
workflow must be established at each site to reduce the time
spent reviewing the sample from the pathology archive, review-
ing the slides for tumour cells and extracting DNA.64

High-volume testing laboratories have a turnaround time of
10–14 working days.105 Considering the importance of KRAS
mutation status for treatment decision making in patients with
mCRC, the test result should be available in about seven
working days.104 In 2010, KRAS test results were obtained
within 15 days in 82%, 51% and 98% of laboratories in
Europe, Latin America and Asia, respectively.8 In France, where
KRAS testing is routinely performed in a few centralised labora-
tories, KRAS status becomes available within 23.6±28.2 days
for 87% of patients.103

KRAS external quality assessment programmes
To ensure the reliability of KRAS testing, external quality assess-
ment programmes that mirror the daily diagnostic situation have
been conducted in Germany,106 Italy,50 the UK,107 North
America105 108 and in a European programme setup by the
ESP.52 The results of the first round of the ESP assessment, con-
ducted in 59 laboratories of 8 European countries, revealed that
only 70% of laboratories correctly genotyped all samples.52

Three aspects of molecular testing were assessed: the percentage
of neoplastic cells in the specimen, the molecular test itself and
reporting, as recommended by van Krieken et al.52 109 Because
the correct mutation call rate decreases in proportion to the
decreasing percentage of tumour cells in a specimen, quality
assurance programmes should include samples with a low
tumour content.110 To this aim, artificial paraffin blocks consist-
ing of mutation-positive colorectal cancer cells diluted in a

background of mutation phase are useful.111 However, this
approach does not take account of test variables linked to the
preanalytical phase, that is, specimen fixation, dehydration,
clearing and embedding.112 Fragmentation of DNA during
tissue processing may lead to artifactual KRAS mutations, whose
frequency is not negligible (4.7%).21 DNA treatment with
Escherichia coli uracil N-glycosylase before amplification and
genotyping on shorter amplicons may be a way to avoid artifac-
tual mutations.21

Genetic intratumoural heterogeneity and treatment
outcome
The tissue distribution of KRAS mutant cells is homogeneous in
most colorectal carcinomas.113 Goranova et al114 analysed mul-
tiple tumour areas by laser capture microdissection and found
that a single dominant clone occupied approximately 80%–90%
of the tumour volume. However, heterogeneity is not negli-
gible.115 Indeed, Richman et al115 described a 7% discordance
among tumour blocks, whereas Baldus et al reported a 8% dis-
cordance between the tumour centre and the invasion fronts.113

Heterogeneous KRAS status has been reported in 11.6% of
primary tumours.116

The threshold level of KRAS-mutated cells within a tumour
mass that is resistant to cetuximab treatment is uncertain.
Retrospective analyses have been carried out to determine
whether cetuximab treatment is effective in tumours harbouring
a small number of mutated cells.75 79 82 117 118 We used HRMA
to look for KRAS mutations in 50 mCRC patients previously
found to be KRAS wild type by direct sequencing and treated in
a second-line or third-line setting with cetuximab-based
therapy.113 114 HRMA identified mutations in 4/50 patients that
had been missed by direct sequencing. None of these four
patients responded to cetuximab treatment, and their
progression-free survival (PFS) and OS were very short. Thus, if
patient management had been based on HRMA results, a signifi-
cant percentage (8%) of patients would have been spared
useless treatment.75 In the study by Bando et al, the
TheraScreen method revealed 9% more KRAS mutations than
did direct sequencing. Among the 47 patients with complete
clinical information who were wild type by direct sequencing
and had been treated with cetuximab alone or combined with
irinotecan, the 9 patients found mutated by TheraScreen failed
to respond and had a significantly shorter PFS and OS than
TheraScreen wild-type patients.82 Molinari et al identified muta-
tions using the highly sensitive mutant-enriched PCR
(eME-PCR) method in 55/111 patients (49.5%), whereas the
mutation rate in exon 2 by direct sequencing was 43/111
(38.7%).117 None of the 12 patients with a KRAS mutant at
eME-PCR responded to anti-EGFR monoclonal antibody-
containing therapy.117 Similarly, in the study by Dono et al,79

26/32 (82.2%) patients initially considered KRAS wild type and
reclassified as KRAS mutated with locked nucleic acid PCR
failed to respond to anti-EGFR therapies. Kimura et al119

obtained similar results with a high-sensitivity two-step PCR
restriction fragmentation length polymorphism method.
Differently, using pyrosequencing, Santini et al118 detected
KRAS mutations in 3/29 patients (10.3%) previously identified
as KRAS wild type by real-time PCR using allele-specific oligo-
nucleotide primers. However, these three patients responded to
treatment with cetuximab combined with irinotecan.118

The above contrasting results may be due to the limited
number of cases analysed, the different populations of patients
(one, two or more previous lines of treatment for metastatic
disease), different treatment regimens (anti-EGFR monoclonal
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antibody alone or in combination with chemotherapy) and dif-
ferent mutation detection panels.

THE FUTURE
Only a subset of mCRC patients selected by KRAS testing
benefit from EGFR-targeted therapy. Thus, there is a need for
studies aimed at identifying additional genetic determinants of
primary resistance. Thus far, only negative predictors have been
investigated, mostly in retrospective analyses. An increase in
KRAS gene copy number (GCN) has been associated with a
more active ‘mutation-like’ phenotype.120 Smith et al showed,
by Taqman-based and fluorescence in situ hybridisation (FISH)
analyses, that KRAS GCN is increased in a small subset (2%) of
wild-type tumours. Valtorta et al121 confirmed that this event is
rare (0.67%) and mutually exclusive with KRAS mutations.
A study based on KRAS CGN and microRNAs suggested that
patients carrying a high CGN of wild-type KRAS may not
respond to cetuximab administration.122 Interestingly, a high
CGN of wild-type KRAS may also be acquired during treatment
with EGFR inhibitors.123

To date, only KRAS testing has been implemented in clinical
practice. The tumours of patients with mCRC are only profiled
for seven KRAS mutations before receiving cetuximab or panitu-
mumab.51 However, it is conceivable that, in the not too distant
future, the comprehensive integrated analysis of the KRAS–
RAF–MAPK and the PI3K–PTEN–AKT signalling pathways will
enable us to identify most of the mCRC patients who are
unlikely to respond to anti-EGFR therapies (figure 2). BRAF is
the principal effector of KRAS. Although the presence of BRAF

in its wild-type form is required for response to treatment,124

BRAF mutations define a genetically distinct subset of CRCs
characterised by an extremely poor prognosis.125 Sartore-
Bianchi et al126 proposed that CRCs lacking alterations in
KRAS, BRAF, PTEN and PIK3CA be defined as ‘quadruple-
negative’. Notably, molecular alterations such as BRAF and
PIK3CA (exon 20) mutations can co-occur in a single
tumour.126 Other panels include the assessment of
Neuroblastoma RAS viral oncogene homolog (NRAS) muta-
tions.125 Approximately 20% of quadruple-negative CRC
patients do not respond to anti-EGFR-targeted therapies, sug-
gesting that genotyping-based selection of patients without
KRAS, BRAF, NRAS and PIK3CA mutations for treatment with
cetuximab is not sufficient and, consequently, that the mechan-
isms underlying alterations in other key elements of the
EGFR-dependent signal cascade need to be unravelled.111

The clinical efficacy of anti-EGFR cancer therapies is limited
by the inevitable development of acquired drug resistance. In
the last few years, various mechanisms of resistance have been
defined and drugs to tackle the resistant cells are being devel-
oped.127 Bouchahda et al128 reported the appearance of a KRAS
mutation during the course of mCRC in a patient who initially
carried wild-type KRAS. In a recent study, preclinical models
and patients’ samples were evaluated to determine whether
KRAS mutation and/or amplification are clinically relevant
mechanisms of acquired cetuximab resistance.123 Recently, deep
sequencing showed that 6 post-treatment tumour biopsies from
10 patients with mCRC who had become refractory to
anti-EGFR therapy were mutated, including a case mutated

Figure 2 Metastatic colorectal cancer (mCRC) patient triage to anti-epidermal growth factor receptor (EGFR) treatment in clinical practice: present
and future prospectives. WT, wild type; MT, mutant; OS, overall survival; PFS, progression-free survival; RR, response rate.
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outside codons 12 and 13 (Q61H), whereas the matched pre-
treatment biopsies were negative.123 Prospective clinical trials
with serial assessments of KRAS status during anti-EGFR treat-
ment are required to define the frequency of KRAS mutations as
a mechanism of acquired resistance to anti-EGFR therapies.127

Resistance can also result from mutations in the EGFR, which is
the drug target itself. Montagut et al129 identified an acquired
EGFR ectodomain mutation (S492R) that prevents cetuximab
binding and activity. However, tumours carrying the EGFR
S492R mutation may still be effectively treated with panitumu-
mab (figure 2). The development of prospective clinical trials
for cetuximab-resistant individuals harbouring this mutation will
shed light on the response rates to panitumumab administration
in this setting. Very recent evidence suggests that the amplifica-
tion of the mesenchymal-epithelial transition factor (MET)
proto-oncogene is associated with acquired resistance in KRAS
wild-type tumours.130 Prospective clinical trials designed to
assess the activity of MET inhibitors in patients displaying resist-
ance as a result of METamplification are required.

Several microRNAs implicated in KRAS regulation may have
predictive value.131 Elevated expression of miR-200b 122 or of
Let-7a132 in the presence of KRAS mutation reduces KRAS
protein levels and improves clinical outcome in patients treated
with cetuximab. In the absence of KRAS and BRAF mutations,
increased miR-31 and decreased miR-592 expression were asso-
ciated with poor response to treatment.133 In CRC KRAS wild-
type patients, low miRNA-143 expression in tumour tissue is an
independent negative prognostic factor, but it is not predictive
of the response to EGFR-targeted agents.134

CONCLUSIONS
Testing tumour tissue for predictive gene mutations to guide
personalised therapy is a rapidly emerging field in pathology.
Standardising molecular testing and harmonising molecular
pathology with traditional histopathology are challenging. The
implementation of KRAS mutation testing reinforces the key
function played by the surgical pathologist in the multidisciplin-
ary management of CRC.

Such local issues as equipment, expertise and personnel avail-
able have led to different approaches to KRAS mutation testing.
In fact, the test is still poorly standardised. Besides the variables
linked to preanalytical tissue processing, molecular testing can
be carried out in-house or in centralised laboratories on differ-
ent types of samples (resection, biopsy and cytological slides)
from different sources (primary and/or metastatic) with
laboratory-based assays or with commercial kits using a wide
range of techniques, each of which differ in performance.
However, there are far more crucial issues involved in KRAS
testing: the DNA sample should be representative of a sizeable
number of CRC cells; the percentage of mutated alleles should
be within the analytical sensitivity range of the method used;
the laboratory should validate the performance characteristics of
the KRAS mutation analysis used; and last but not least, the
laboratory should undergo internal and external quality
assessments.

Investigations are required to clarify the relationship between
KRAS genetic intratumoural heterogeneity and clinical sensitiv-
ity of mutational detection tools in relation to anti-EGFR treat-
ment outcome. The comprehensive integrated analysis of
multiple biomarkers and the serial assessments of KRAS status
during anti-EGFR treatment will help to select more accurately
patients with primary or acquired resistance to anti-EGFR
therapy.

Key messages

▸ The DNA sample should be representative of a sizeable
number of CRC cells.

▸ The percentage of mutated alleles should be within the
analytical sensitivity range of the method used.

▸ The laboratory should validate the performance
characteristics of the KRAS mutation analysis used.

▸ The laboratory should undergo internal and external quality
assessments.
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