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ABSTRACT
Carcinoma-associated fibroblast (CAF) as prominent cell
type of the tumour microenvironment has complex
interaction with both the cancer cells and other non-
neoplastic surrounding cells. The CAF-derived regulators
and extracellular matrix proteins can support cancer
progression by providing a protective microenvironment
for the cancer cells via reduction of chemotherapy
sensitivity. On the other hand, these proteins may act as
powerful prognostic markers as well as potential targets
of anticancer therapy. In this review, we summarise the
clinical importance of the major CAF-derived signals
influencing tumour behaviour and determining the
outcome of chemotherapy.

INTRODUCTION
Carcinoma-associated fibroblasts in
tumour stroma
In the process of tumour formation, the normal
microenvironment ‘niche’ changes to an altered
(ie, reactive or desmoplastic) stroma which is com-
posed of non-malignant supporting cells (ie, blood
vessels, infiltrating inflammatory cells and blast-like
cells).1 2 This altered microenvironment functions
as a collaborative partner in the process of tumouri-
genesis by influencing the homeostasis of cancer
cells via paracrine regulators (eg, growth factors,
cytokines and chemokines) and exosomes contain-
ing nucleic acids.1 3–5 Cancer associated fibroblasts
(CAFs), prominent stromal elements in most
types of human carcinomas, are α-smooth
muscle actin positive, spindle-shaped, blast-like
cells. Differentiation of CAFs from other cell types,
such as local fibroblasts, hepatic stellate cells, mesen-
chymal stem cells, endothelial and epithelial cells, is
mainly mediated by transforming growth factor-β1
(TGF-β1), but other factors, such as growth hor-
mones (ie, epidermal growth factor (EGF), fibroblast
growth factor (FGF) and platelet-derived growth
factor (PDGF)), chemokines, epigenetic regulators
and oxidative stress also may play a role in CAF dif-
ferentiation.4 6 7 CAFs, phenotypically, closely
resemble normal myofibroblasts, but they express
specific markers (ie, fibroblast activation protein
(FAP), fibroblast-specific protein 1, neuronglial
antigen-2, vimentin, Thy-1, tenascin (TN)-C, peri-
ostin (POSTN), palladin or podoplanin (PDPN))
and display an increased proliferation and migratory
behaviour in vitro.8 9 CAFs produce and secrete
various extracellular matrix (ECM) proteins (ie, col-
lagens I, III, IV), proteoglycans (ie, fibronectin,
laminin, TN), chemokines (eg, CXCL and CCL),
cytokines (eg, interleukin (IL)-6 and IL-8) and other
tumour-promoting factors which affect vascularisa-
tion (ie, PDGF, vascular endothelial growth

factor (VEGF), stromal-derived factor-1 (SDF-1),
matrix metalloproteinase (MMPs)), proliferation
capacity, tumour cell invasiveness and survival
(ie, TGF-β, EGF, hepatocyte growth factor (HGF)
or FGF).1 9–11

Regarding anticancer therapy, the frequency of
genetic mutations in CAFs is one of the most
important issues. Cells with genetic stability may be
less prone to escape or resistance to chemotherapy
than those with genomic instability.12 Several
studies demonstrated that high percentage of CAFs
undergo genetic alterations, such as loss of hetero-
zygosity or mutation of tumour suppressor genes
(ie, phosphatase and tensin homolog and P53).13–16

The theory of genetic coevolution of CAF and the
neighbouring cells (ie, random mutation of CAF
generated independently from neoplastic epithelial
cells that may support tumour progression) is under
debate due to the potential artefacts caused by the
analytical methods used for the identification of
these genetic alterations.17 Other groups described
that the somatic mutations of CAFs are found to be
extremely rare and are unlikely to be responsible
for their stable cancer-promoting attributes.18 19

In this short review, we discuss those CAF-
derived proteins which (1) may have an important
role in the development of environment-mediated
drug resistance, (2) may act as powerful prognostic
markers and (3) may be promising targets of antic-
ancer therapy.

Relation of CAFs to microenvironment-mediated
drug resistance
Emerging data suggests that several factors of the
tumour microenvironment play a critical role in
determining therapy response.10 CAF-derived
factors may contribute to the development of a
protective milieu via influencing the following: (1)
cell–cell/cell–matrix interactions, (2) cancer cell sur-
vival, (3) interstitial fluid pressure (IFP) within the
tumour and (4) suppression of antitumoural
immune responses.2 20

Cell adhesion-mediated drug resistance
(CAM-DR) is mediated by the adhesion of tumour
cells to stromal fibroblasts or to ECM compo-
nents.21 Physical contact between host fibroblasts
and tumour cells (eg, melanoma and non-small cell
lung cancer (NSCLC) cells) supports tumour cell
survival via activation of antiapoptotic pathways or
inducing epithelial-to-mesenchymal transition
(EMT).10 22–24 EMT-originated blastoid cells can
acquisite cancer stem cell-like traits and drug resist-
ance against conventional chemotherapeutics (eg,
taxol, vincristine, oxaliplatin or gemcitabine), as
well as anti-EGFR therapy.7 24 25 Adhesion of
cancer cells to ECM proteins, such as CAF-derived
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laminin, collagen, fibronectin and POSTN also results in
CAM-DR.10 20 These proteins can bind to integrin receptors
(eg, α1-α6β1 and αvβ5) located on the surface of tumour cells
and cause protection against drug-induced apoptosis via activa-
tion of the phosphatidylinositide 3-kinase (PI3K)/AKT pathway,
which inhibits the release of drug-induced apoptotic factors, like
cytochrome-c.26 27

CAF-derived soluble regulators, such as hormones, chemo-
kines and cytokines are also able to mediate the therapy resist-
ance in different ways. Activation of receptors by prostaglandin
E2 (PGE2), sphingosine-1-phosphate and PDGF-C ligand pro-
motes tumour cell survival by activation of PI3K/AKT and
Hedgehog signals in vitro.20 DNA damage-induced nuclear
factor-κB (NF-κB) dependent wingless-type MMTV integration
site family member 16B (WNT16B) protein expression in fibro-
blast can lead to mitoxantron therapy resistance in prostate
cancer cells through T cell factor/lymphoid enhancer binding
factor activation.28

IFP and transvascular transport of anticancer drugs also may
influence the success of chemotherapy. Inhibition of
CAF-derived VEGF, PDGF or their receptors results in lower
IFP within tumours, hence, improves chemotherapy efficacy.29
30 For example, treatment with anti-PDGF antibody may regu-
late IFP by the relaxation of cells constituting connective tissues,
integrin-mediated contacts with ECM fibres, or ECM rebuilding
into a less dense structure.29

CAFs are also involved in tumour-mediated immunosuppression
by the expression of immunomodulating ECM proteins, such as
TN-C, inhibiting the migration of monocytes and adhesion of T
lymphocytes to fibronectin, and thrombospondin-1, regulating cel-
lular phenotype of antigen-presenting cells/APCs and T cells.31 32

CAF-derived chemokines, such as monocyte chemotactic
protein-1/CCL2, modulate monocyte migration and release of
IL-4 and interferon-γ by CD4 T lymphocytes.32 The chemokine
SDF-1 promotes monocyte transdifferentiation to M2 polarised
macrophages.33 M2-like tumour-associated macrophages help to
protect cancer cells from the effect of anticancer drugs (eg, pacli-
taxel and cisplatin) via releasing survival signals (ie, MFG-E8, milk
fat globule-EGF 8 protein), proteases (eg, cathepsins) and support-
ing angiogenesis by secreted factors compensating the effect of
anti-VEGF therapy.34–36 CAF-derived ECM modulator protei-
nases, such as MMPs, FAP, urokinase-type plasminogen activators
and proinflammatory cytokines (ie, IL-6 and IL-8) may also influ-
ence the relation of tumour cells to immune responses.32

Practical role of CAF-derived factors in clinical oncology
As we summarised above, CAFs are actively involved in tumour-
igenesis and in formation of environment-mediated drug

resistance. Based on these properties of CAFs, their changed
protein expression may be used as a prognostic marker. The
abundance and molecular repertoire of CAFs, such as FAP,
PDGF/PDGFR (platelet-derived growth factor receptor), TN-C,
PDPN, secreted protein acidic and rich in cysteine, hepatocyte-
derived growth factor receptor (HGFR, Met), TGF-β and
TGFβRs, carry significant prognostic information about the clin-
ical behaviour of a given tumour (table 1).

CAFs overexpress a wide range of factors which are critical to
surrounding neoplastic cell growth. Based on these features, the
clinical application of these CAF-related ligands seems to be
logical as the targets of anticancer therapies. One possible candi-
date among the CAF-derived factors is TGF-β, which acts as a
suppressor of tumour formation in premalignant conditions and
promotes tumour growth, invasion, angiogenesis and metastasis
formation in advanced tumours (‘TGF-β Paradox’).57 58 It has a
basic role in the development of abnormal niche as a master
regulator of trans-differentiation of CAFs from its precursors
and with other regulators (ie, EGF, FGF and PDGF) of invasive
and metastatic phenotype formation via EMT.59 60 It also influ-
ences the expression of invasion-associated proteins (including
αIIIβ1 integrin and fibulin-5) as well as cellular adhesion via
decreasing the expression of E-cadherin.61 By the effect of
TGF-β, the fibroblasts actively produce collagen, laminin, TN
and fibronectin, all of which may also contribute to a decreased
cytotoxicity of anticancer agents via CAM-DR.10 20 62 Upon
treatment with TGF-β, mammary fibroblasts also causes an upre-
gulation of SDF-1 chemokine, which modulates tumour cell
proliferation, angiogenesis, apoptosis and antitumoural immune
responses.33 63 64 TGF-β inhibits the proliferation, differenti-
ation and the tumour-targeting activities of natural killer (NK)
and T cells, as well as influencing the migration of monocytes
and macrophages into the tumour microenvironment.58 61

Targeted therapy against TGF-β and its receptors includes neu-
tralising monoclonal antibodies (mAb), antisense oligonucleo-
tides (ASO; blocking of activation of TGF-β ligands synthesis
via inhibiting TGF-β mRNA expression), small molecule recep-
tor kinase inhibitors (arresting downstream canonical and non-
canonical signalling by inhibiting the kinase activity of TGFβRI
or TGFβRII) are discussed in table 2.

PDGF and VEGF, basically, play a role in induction and pro-
gression of angiogenesis as well as regulation of IFP in tumour
interstitium.29 30 PDGF acts as a proliferative and chemotactic
factor to CAFs, as well as enhances their growth factor expres-
sion including insulin-like growth factor-1 (IGF-1), HGF, FGF
and VEGF influencing tumour growth, invasion and angiogen-
esis.8 69 PDGF-D ligand may cause the failure of gemcitabine
treatment (via acquisition of a chemoresistant EMT phenotype)

Table 1 Function and prognostic role of CAF-related proteins

Protein Role in tumour biology Disease and references

FAP Tumour cell growth, proliferation, ECM remodelling, metastasis formation and angiogenesis37 DCIS, NSCLC, CRC38–40

PDGF/PDGFRs Angiogenesis, regulation of interstitial fluid pressure in tumours41 Pancreas and breast carcinoma, NSCLC42–44

TN-C Hypoxia-driven angiogenesis, proliferation, migration, escape from immune surveillance8 CRC, breast cancer, melanoma 8

PDPN Cancer cell invasion45 LACC, CRC (good prognosis) breast cancer, oesophagus
adenocarcinoma45–48

SPARC Cell migration, proliferation, matrix cell adhesion and tissue remodelling49 Pancreatic cancer, NSCLC49 50

Met Receptor of HGF, it plays a role in the tumour cell invasion and CAF proliferation51 LACC52

TGF-β/TGFβRs Tumour growth, proliferation, invasiveness, angiogenesis, immunesuppression.53 54 CRC and breast cancer55 56

CAF, cancer associated fibroblast; CRC, colorectal carcinoma; DCIS, ductal carcinoma in situ; ECM, extracellular matrix; FAP, fibroblast activation protein; HGF, hepatocyte growth factor;
LACC, lung adenocarcinoma; NSCLC, non-small cell lung cancer; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; PDPN, podoplanin; TGF-β,
transforming growth factor-β; TN-C, tenascin-C; SPARC, secreted protein acidic and rich in cysteine; Met, hepatocyte-derived growth factor receptor.
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of hepatocellular carcinoma (HCC) cells; furthermore, PDGF-C
mediates resistance to antiangiogenic therapy with VEGF inhibi-
tors.43 70 VEGF influences tumour perfusion, vascular volume,
permeability activity, microvascular density and the number of
circulating endothelial and progenitor cells.30 71 VEGF/VEGFR
(vascular endothelial growth factor receptor) signalling protects
endothelial, ovarian and NSCLC cells against chemotherapeutic
injury via the activation of PI3K/AKT pathway and induction of
antiapoptotic proteins including Bcl-2 and survivin.20 72–74

Inhibition of PDGFRs and VEGFRs by multikinase inhibitors
and anti-VEGF mAbs seems to be effective anticancer strategies
(table 3).

Carcinoma cells induce HGF secretion of CAFs by different
regulator secretion, such as IL-1β, bFGF, PGE2, PDGF and
TGF-β.8 84 CAF-secreted HGF signal influences the invasion of
transformed epithelial cells (including enhanced dissociation and
stromal migration of cancer cells) and stimulates CAF prolifer-
ation as autocrine loop via Met-tyrosine kinase receptor activa-
tion.51 52 85 HGF protects cancer cells from chemotherapeutic
agents via enhancing DNA repair by reactivation of Met/PI3K/
extracellular-signal-regulated kinase (ERK) cascades and downre-
gulation of the expression of antiapoptotic proteins (ie,
Bcl-XL).86 87 HGF is also involved in the mechanisms of resist-
ance development to BRAF and human epidermal growth factor
receptor 2 inhibitors as well as selective EGFR- tyrosine kinase
inhibitors (TKIs) (ie, gefitinib and erlotinib).2 88 89 It is a chemo-
tactic factor for T cells and a negative regulator of the cytotoxic
activity of NK cells furthermore modulates the immunoglubulin
production and maturation of B-cells.32 In table 4, we summarise
the most important HGF mAbs and selective/non-selective
Met-TKIs.

Stromal IGF-1 increases the invasive capacity of cancer cells,
influences the proliferation of epithelial cells (via upregulation
of mitogen-activated protein kinase (MAPK)/AKT, Cyclin D1
and downregulation of p27) and upregulates the proliferation-
associated genes in stromal fibroblasts.107 108 IGF-1/IGF-1R
signal mediates the therapeutic response to conventional che-
motherapeutic agents, such as 5-fluorouracil and gemcitabine,
through increased survivin stability.109 110 CAFs secreted IGF-2
also can influence the survival of cancer cells induced via acqui-
sition of stem cell-like properties.111 Blocking of IGF signalling
with anti-IGF-1R mAbs, such as AMG 479, B11B022 and cixu-
tumumab/IMC-A12 together with IGF-1R kinase inhibitors (eg,
AXL 1717, BMS-754807 and linsitinib/OSI-906) proved clinical
benefit in the treatment of HCC, SCLC, NSCLC, breast and
pancreatic cancers (phase I/II stage).8

FAP/F19 belonging to the family of plasma membrane-bound
serine proteases promoting tumour cell growth and proliferation
plays a role in ECM remodelling (ie, degrading type I collagen and
influencing MMPs’ expression), metastasis formation, angiogenesis
and deregulation of antitumoural immune responses.112 The use of
humanised mAb F19 (sibrotuzumab) and small-molecule FAP
enzyme-inhibitor (talabostat) showed no therapeutical benefits
alone or in combination in case of metastatic colorectal carcinoma,
NSCLC, stage IV melanoma and chronic lymphocytic leukae-
mia.112 113 FAP-based target therapies were found to be promising
in preclinical studies, such as doxorubicin-combined FAP-targeting
prodrugs and DNAvaccines.114 115 FAP radioimmunotherapy (tar-
geted delivery of therapeutic radioisotopes to the tumour site by
the developed sensitive FAP mAbs) and short heparin RNAvector-
based therapies (RNA inteterference) also seems to be a promising
anticancer treatment in the future.116 117

Table 2 Types and clinical use of anti-TGF-β/TGF-βR targeted therapies

Drug Type, target and refs Disease, stage and refs

Fresolimumab/GC-1008 mAb against TGF-β1,-2,-365 Breast cancer (with radiotherapy, Phase I), RCC and malignant
melanoma (Phase II)65 66

Trabedersen/AP12009 ASO against TGF-β1 mRNA53 CRC, pancreatic carcinoma and malignant melanoma, NSCLC
(Phase I/II)53

Belagenpumatucel-L/
Lucanix;

ASO (antisense gene-modified allogeneic tumour cell vaccine) against
TGF-β2 mRNA53 66

NSCLC (Phase II)67

LY2157299 TGFβR1 serine/threonine kinase inhibitor68 HCC (Phase II), pancreatic cancer (with gemcitabine, Phase I/II)66 68

ASO, antisense oligonucleotides; CRC, colorectal carcinoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; TGF-β, transforming growth
factor-β; mAb, monoclonal antibody.

Table 3 Types and clinical use of anti-VEGF mAbs and multi-kinase inhibitors

Drug Type and target Disease, stage and references

Avastin/Bevacizumab mAb against VEGF75 Multiple tumour types including: CRC, NSCLC, and breast cancer (FDA app)
Pazopanib/
GW786034

TKI of VEGFR-1,-2,-3, PDGFRα,-β, Kit, FGFR-1,-3, Itk, Lek,
c-Fms76

Multiple tumour types including: solid tumours (with paclitaxel/carboplatin, Phase I),
RCC (FDA app)77

Imatinib/STI157 TKI of PDGFRβ ,Bcr-Abl, Kit78 Multiple tumour types including: GIST (FDA app)78

Sunitinib/SU11248 TKI of VEGFR1-,2,-3, PDGFRα,-β, Kit, FLT-3, CSF1R, RET78 GIST (imatinib resist; FDA app), RCC (FDA app), NSCLC (Phase III)78 79

Motesanib TKI of VEGFR1,-2, PDGFRβ, Kit, RET80 NSCLC (with carboplatin/paclitaxel, Phase III), breast cancer (with docetaxel/paclitaxel,
Phase I/II)80–82

Sorafenib TKI of VEGFR2,-3, PDGFRβ Kit, RET, B-Raf, FLT-378 83 Multiple tumour types including: RCC (FDA app), HCC (FDA app)83

CSF1R, colony-stimulating factor 1 receptor; CRC, colorectal carcinoma; FDA app, Food and Drug Administration approved; FLT-3, FMS-like tyrosine kinase-3; GIST, gastrointestinal
stromal tumour; HCC, hepatocellular carcinoma; Itk, interleukin-2 receptor inducible T-cell kinase; Lek, leucocyte-specific protein tyrosine kinase; NSCLC, non-small cell lung cancer;
PDGFR/PDGFR-α/β, platelet-derived growth factor receptor-α/β; RCC, renal cell carcinoma; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor;
mAb, monoclonal antibody; TKI, tyrosine kinase inhibitors; FGFR, fibroblast growth factor receptor; RET, rearranged during transfection.
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CONCLUSION
CAF-induced signalling pathways function as key factors in
stroma-supported cancer progression, and can be therapeutically
targeted against microenvironment-mediated drug resistance.
Focusing the attention on these microenvironmental cells may
help us to better understand their role in tumour pathogenesis
and, moreover, may help to better predict the clinical outcome
of disease, and to make patient-tailored anticancer treatments.

Take home messages

▸ CAF-derived factors may provide pro-tumorigenic effects via
altering the tumorous microenvironment.

▸ Targeting CAF-derived factors may act as potential anti-
cancer therapeutic strategies.

▸ CAF-derived factors may be clinically used as prognostic
factors of different tumorous diseases.
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A tumoros mikrokörnyezet kiemelkedő jelentőségű sejttípusa, a carcinoma-asszociált 
fibroblast (CAF) mind a tumorsejtekkel, mind a többi környező, nem tumoros 
sejttípussal komplex módon együttműködik. A CAF-eredetű szabályzó faktorok és az 
extracelluláris mátrix fehérjéi a kemoterápia iránti érzékenység csökkentése révén védő 
mikrokörnyezet biztosításával elősegítik a tumoros progressziót. Másrészt, ezek a 
fehérjék hasznos prognosztikai markerként és potenciális tumor ellenes terápiás 
célpontként is viselkedhetnek. Közleményünkben a tumor viselkedését és a kemoterápia 
eredményességét befolyásoló jelentősebb CAF-eredetű szignálok  klinikai jelentőségét 
foglaljuk össze.  
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