Lymph node revealing solutions in colorectal cancer: should they be used routinely?

Joanne Horne,1 Adrian C Bateman,1 Norman J Carr,1 Isobel Ryder2

ABSTRACT
The Royal College of Pathologists (RCPath) and College of American Pathologists recommend that at least 12 lymph nodes should be harvested for adequate staging of colorectal carcinoma. Just one nodal tumour deposit upstages the malignancy from pN0 to pN1. This is critically important as node-positive patients (pN1) are considered for adjuvant chemotherapy whereas node-negative patients (pN0) may not be. It is not always easy to harvest the required number, especially in patients with rectal carcinoma who may have received neoadjuvant therapy—an increasingly common treatment. The use of neoadjuvant therapy is known to further decrease the number and size of identifiable lymph nodes within specimens, meaning that the lymph node harvest often fails to reach RCPath guidelines. Lymph node revealing solutions consisting of either single chemicals such as alcohol or acetone or compounds have been investigated to help improve the lymph node harvest in difficult specimens, for example, those received following neoadjuvant therapy. Published research evidence reviewed here suggests that lymph node revealing solutions significantly improve lymph node harvesting, and that glacial acetic acid, ethanol, water and formalin is advantageous in comparison with other revealing solutions in that it is safe, cheap, easy to use and relatively quick. However, the quantity of good evidence is limited and the clinical implications of improving lymph node harvesting require further research.

INTRODUCTION
Colorectal carcinoma (CRC) is the fourth most common cancer in the UK.1 In 2010 alone, there were 40 695 new diagnoses and 16 013 deaths from the disease.2 High quality histopathological assessment, including harvesting of an adequate number of lymph nodes, is required in order to accurately stage the patient and help deliver the most appropriate treatment postsurgery. The presence of metastases within lymph nodes is inextricably linked to the prognosis of the patient.3

Current recommendations are that at least 12 lymph nodes should be retrieved for adequate staging of CRC,45 with all mesentery within the tumour vicinity searched. Just one nodal tumour deposit upstages the malignancy from pN0 to pN1.4 This is important as node-positive patients (pN1) are considered for adjuvant chemotherapy whereas node-negative patients (pN0) may not be.5 The requirement for at least 12 lymph nodes is based on evidence demonstrating the prognostic significance of lymph node harvesting.6 Some literature suggests that more lymph nodes should be harvested for adequate staging,7 but 12 is the current consensus.89 At our hospital, specimens are resampled when less than 12 lymph nodes are harvested at the first attempt.

Lymph node harvesting is traditionally performed by a manual technique of vision and palpation. In the majority of cases, harvesting a minimum of 12 lymph nodes should be achievable but this may become more difficult in the rectum, especially in patients who have received neoadjuvant chemotherapy as the size of lymph nodes may be reduced, making identification more challenging.9 Use of neoadjuvant therapy is not the sole cause of an inadequate lymph node harvest. Other limiting factors are known to be fixation time,310 experience of the surgeon and failure by the disector to appropriately examine all nodes within a specimen, either due to lack of experience or poor technique.1112

In response to this, a number of studies have been carried out to address the issue of lymph node harvesting, using a variety of methods. These have included extending the fixation time,31314 injecting dyes to accurately map lymph node chains,1516 transilluminating the mesentery to identify small nodes,1718–22 submitting residual mesenteric tissue in its entirety23 and using a variety of different lymph node revealing solutions.44 In many studies, these techniques have been combined.17–24272831–34

This review is based on a search of medical and scientific databases to identify all available literature written in English, and published within the last 30 years. The review focuses on the use of chemical lymph node revealing solutions in relation to CRC specimens only. Studies related to other carcinoma types are excluded from this review, as are those which use other adjunct techniques such as lymph node mapping. The studies within this review are mainly of cohort and case control design,317–44 although there is also one randomised controlled trial.18

HISTORY OF LYMPH NODE REVEALING SOLUTIONS
Since the first fat clearance technique using dye injection and lymph node mapping with alcohol clearance was described by Gilchrist and David24 in 1938, authors have studied a variety of lymph node revealing solutions.17–43 A number of early studies investigated the use of alcohols, acetone and xylene,17–192122262830–33 but since 1997 when the first study was published,41 there has been a greater focus on the use of glacial acetic acid, ethanol, water and formalin (GEWF) (table 1).33–42

REVIEW OF THE LITERATURE

Number of lymph nodes retrieved

The most commonly described benefit of using lymph node revealing solutions is the pure increase in the numbers of lymph nodes harvested, many of which are of a smaller size than might be identified by manual dissection. Studies have shown a variable increase in harvested lymph nodes. In one study, a mean harvest of 76.4 and 73.7 lymph nodes was seen after application of alcohol in colonic and rectal resections, respectively.19 In the same study, a secondary manual dissection identified a mean of 18.1 and 21.2 lymph nodes, respectively, but the authors did not clarify whether both sets of dissections were performed by the same individuals.19 If manual dissections had been carried out by less experienced individuals then it is possible that this may have also affected the numbers of nodes harvested.

Metastatic incidence and upstaging

Metastatic incidence refers to the proportion of lymph nodes which contain tumour deposits. A decrease in metastatic incidence after the use of lymph node revealing solutions has been reported.17 18 22 25 27 31 38 40–42 Saleki and Haeri40 attributed significance to this finding, stating it to be due to the overall greater number of lymph nodes harvested after secondary dissection. In contrast, five studies showed an increase in metastatic incidence, 29 32 36 37 39 but not always with significance.37 39

Upstaging refers to an upwards change in pathological staging, which may then alter patient treatment if there is a shift from node-negative (pN0) to node-positive (pN1 or pN2). This is because node-positive patients receive chemotherapy, while node-negative patients may not.45 Nine studies reported upstaging after the use of lymph node revealing solutions,17 23 25 27 31 32 40–42 ranging from 2.4% to 33% (table 2).31 41 Six of these claimed the finding to be significant, in that upstaging from Dukes’ B to Dukes’ C was reported, prompting adjuvant therapy.17 25 27 32 40 41 However, this may not have been a correct assumption because most of these studies had questionable underlying primary manual dissection

<table>
<thead>
<tr>
<th>Lymph node revealing solution</th>
<th>Manual dissection</th>
<th>Fat clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. cases</td>
<td>Mean no. lymph nodes</td>
</tr>
<tr>
<td>Acetone*25</td>
<td>34</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>6.9</td>
</tr>
<tr>
<td>Acetone/IPA/oil26</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acetone/xylene18</td>
<td>75</td>
<td>2.7</td>
</tr>
<tr>
<td>Acetone/alcohol/xylene18</td>
<td>22</td>
<td>4.7</td>
</tr>
<tr>
<td>Acetone/alcohol/xylene17</td>
<td>15</td>
<td>20.9</td>
</tr>
<tr>
<td>Acetone/alcohol/xylene18</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol13</td>
<td>48</td>
<td>19.4</td>
</tr>
<tr>
<td>Alcohol19</td>
<td>82</td>
<td>9.6</td>
</tr>
<tr>
<td>Alcohol16</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol18</td>
<td>37</td>
<td>18.1/21.2</td>
</tr>
<tr>
<td>Alcohol/xylene21</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>Alcohol/xylene20</td>
<td>10</td>
<td>18.7</td>
</tr>
<tr>
<td>Alcohol/xylene22</td>
<td>103</td>
<td>6.2</td>
</tr>
<tr>
<td>Alcohol/xylene23</td>
<td>221</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>13.1</td>
</tr>
<tr>
<td>Alcohol/xylene17</td>
<td>41</td>
<td>7.3</td>
</tr>
<tr>
<td>Alcohol/xylene20</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GEWF37</td>
<td>40</td>
<td>18.30</td>
</tr>
<tr>
<td>GEWF42</td>
<td>30</td>
<td>5.1</td>
</tr>
<tr>
<td>GEWF43</td>
<td>12</td>
<td>6.25+1.6</td>
</tr>
<tr>
<td>GEWF44</td>
<td>32</td>
<td>6.8</td>
</tr>
<tr>
<td>GEWF45</td>
<td>30</td>
<td>2.94</td>
</tr>
<tr>
<td>GEWF46</td>
<td>35</td>
<td>6.26</td>
</tr>
<tr>
<td>GEWF47</td>
<td>59</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>9</td>
</tr>
<tr>
<td>GEWF49</td>
<td>117</td>
<td>5.0</td>
</tr>
<tr>
<td>GEWF50</td>
<td>34</td>
<td>5.9</td>
</tr>
<tr>
<td>GEWF51</td>
<td>423</td>
<td>11.4</td>
</tr>
<tr>
<td>GEWF52</td>
<td>76</td>
<td>–</td>
</tr>
<tr>
<td>GEWF53</td>
<td>8</td>
<td>7.6</td>
</tr>
</tbody>
</table>

*Two study groups.
†Non-neoadjuvant/neoadjuvant.
‡Colonic/rectal.
§Multiple sites with lymph node clearance performed at the main site only.
¶Two study groups, multiple dissections and multiple sites of tumour.
**Comparison of cases from different years; also includes assessment of improved surgical practice.
GEWF, glacial acetic acid, ethanol, water and formalin.
practice with fewer than the recommended minimum of 12 lymph nodes found on average (range 2.94–7.3).17 25 32 40 41
These studies were therefore more likely to identify upstaging once a lymph node revealing solution had been applied. It is
likely that upstaging would have been insignificant, or not present at all, had there been optimal primary manual dissec-
tion. In one study by Koren et al,41 there was upstaging in 10 cases, and a further eight cases had the staging changed from
Nx to N0, suggesting an underlying deficit in primary manual dissection technique. The case upstaged by Brown et al27 was a
soft tissue metastasis which the authors suggested may have been artefactual. The evidence in the literature is therefore
questionable.

Does lymph node size matter?

Multiple studies have demonstrated smaller sized lymph nodes after lymph node revealing solutions are used (table 3).3 18 19 22 25 36 39 40 42 44 Some of the more recent studies using GEWF have assessed and attributed statistical sig-
nificance to this.36 39 40 42 Brown et al27 found that 83% of additional lymph nodes were ≤2 mm in size. Where GEWF is
used this may be due to the white colour of lymph nodes which facilitates detection.39 There is ongoing debate regarding the
clinical significance of CRC metastases in small lymph nodes. Dhar et al46 concluded that metastatic lymph node size is a
strong prognostic variable in CRC, using two sample log rank testing to demonstrate that the prognostic impact decreased
when lymph nodes were more than 10 mm in diameter. Dhar et al46 did concede that their findings needed to be con-
ﬁrmed with a larger study before clinical application. In another recent study, Märkl et al concluded that ‘minute lymph nodes
[<1 mm] have virtually no role in correct histopathological lymph node staging’.47 They did however agree that the detection
of relatively small lymph nodes (1–5 mm) was an important factor for exact lymph node staging and was prognostically
relevant, with an association between a high number of harvested lymph nodes and a favourable outcome in colon carcino-
ma.47

It is important to consider whether finding a greater number of smaller lymph nodes has the potential to change patient man-
agement. If the only signiﬁcant ﬁnding is a greater number of smaller tumour-free lymph nodes, then the patient will remain
node-negative and there will be no change in treatment. There will be no beneﬁt to the patient but there will be a cost to the
laboratory, both in terms of increased turnaround times and ﬁnances.

If metastases are prevalent in larger lymph nodes (ie, >5 mm), then they should be identiﬁed by manual dissection,
providing the dissector is adequately experienced. If this is the case, then one might argue that the use of lymph node revealing
solutions is not necessary. It may be that education is as important a tool as is the use of adjunct chemicals, but currently there
remains a lack of evidence to prove or disprove this.

CHALLENGES IN STUDY DESIGN

Quality of evidence

The greatest challenge in assessing the true value of lymph node revealing solutions in CRC surrounds the quality of the existing
evidence. The majority of existing studies are open to at least one type of bias which may invalidate the conclusions. Different
types of bias which may have affected the existing studies are summarised in box 1.

Underlying primary dissection practice

Many of the studies did not achieve the recommended targets during primary manual dissection,17 22 25 29 32 35 36 38 39 42 43
with the mean number of lymph nodes harvested ranging from 2.7 to 21.2.19 Kelder et al30 only found a mean of 5.0 lymph nodes
by primary manual dissection in 117 colonic specimens, even though their study was relatively recent. The highest number of
lymph nodes found in any specimen in their study was only 17,39 which was lower than the average number found by primary
manual dissection in a number of other studies.19 23 25 30 37 In the study by Schmitz-Moormann et al,22 routine primary dissec-
tion yielded a mean nodal count of 2.7, and failed to identify any nodes in six out of the 75 cases. This issue is supported by a
number of studies where the importance of enthusiasm and skill of both pathologist and surgeon is noted because it directly
affects the quality of the specimen and subsequent nodal harvest.18 35 42 Gregurek and Wu37 found that educating pathol-
gogists in appropriate primary manual dissection practice gave more powerful results than the use of lymph node revealing
solutions; however, there was potential bias in their study (box 1). Additionally, failing to consider the experience of dissectors
may also introduce sampling bias, perhaps via the involvement of inexperienced dissectors who might miss smaller lymph nodes in
comparison with dissectors who are highly experienced in manual dissection. It was often unclear in the case control studies
who performed the secondary dissection.57–24 26–29 31–43

The exceptions to this were the studies by Jass et al10 and Vogel et al,23 where secondary dissection was performed by the
ﬁrst author or one of three pathologists not aware of the outcome of the primary dissection, respectively. Only one of the
studies included true randomisation of specimens into study groups.38 Gregurek and Wu37 claimed that cases were alternately
enrolled into study and control groups; however, pathologists were given the opportunity to change this, which weakened their
study design.

Table 2 Incidence of upstaging

<table>
<thead>
<tr>
<th>Lymph node revealing solution</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone25</td>
<td>2/34 (5.9%) upstaged from pN1 to pN2*</td>
</tr>
<tr>
<td></td>
<td>2/80 (2.5%) upstaged:</td>
</tr>
<tr>
<td></td>
<td>1 upstaged from pN0 to pN1</td>
</tr>
<tr>
<td></td>
<td>1 upstaged from pN1 to pN2</td>
</tr>
<tr>
<td>Alcohol and xylene17</td>
<td>3/41 (7.3%) cases upstaged from Dukes’ B to Dukes’ C</td>
</tr>
<tr>
<td>GEWF41</td>
<td>10/30 (33%) upstaged:</td>
</tr>
<tr>
<td></td>
<td>4 upstaged from Nx to N1</td>
</tr>
<tr>
<td></td>
<td>4 upstaged from N0 to N1</td>
</tr>
<tr>
<td></td>
<td>2 upstaged from N1 to N2</td>
</tr>
<tr>
<td>GEWF42</td>
<td>4/30 (13.0%) upstaged—no colorectal cancer cases upstaged§</td>
</tr>
<tr>
<td>Alcohol and xylene32</td>
<td>5/58 (8.6%) upstaged (Dukes’ B to Dukes’ C)</td>
</tr>
<tr>
<td>GEWF40</td>
<td>3/35 (8.6%) upstaged from Dukes’ B to Dukes’ C</td>
</tr>
<tr>
<td>Acetone, alcohol and xylene27</td>
<td>4/15 (26.7%) upstaged:</td>
</tr>
<tr>
<td></td>
<td>1 upstaged from pN0 to pN1</td>
</tr>
<tr>
<td></td>
<td>3 upstaged from pN1 to pN2</td>
</tr>
<tr>
<td>Alcohol and xylene31</td>
<td>Stage changed in 2/84 (2.4%) of cases</td>
</tr>
<tr>
<td>Alcohol23</td>
<td>2/10 (2.0%) upstaged from pN1 to pN2</td>
</tr>
</tbody>
</table>

*Control group.†Study group.‡Stage also changed from Nx to N0 in eight cases.§Upstaged one breast carcinoma and three bladder carcinoma cases.
GEWF, glacial acetic acid, ethanol, water and formalin.
Blinding

Studies involving GEWF will always have an immediate detection bias, caused by an inability to use blinding. Iversen et al.38 described GEWF as having ‘its own characteristic macroscopic appearance, which is impossible to hide’. This could then either consciously or unconsciously give dissectors the ability to alter their practice which could skew any potentially significant findings. Newell et al.36 admit to this limitation, commenting that ‘those pathologists using the standard technique would likely examine pericolic fat more thoroughly’.

Time and cost

The most rapid treatments took 6 h to complete and all used GEWF.40–42 In contrast, the longest treatment using a combination of alcohol and xylene took a minimum of 3 weeks.32 Unsurprisingly, many of the more lengthy treatments have been associated with multistep studies, where more than one chemical has been used in the lymph node revealing solution.27, 28, 32 Many studies taking a day or less of additional time to harvest lymph nodes used GEWF.35–38, 40–42 With the need to modernise National Health Service (NHS) histopathology departments,48–51 it is unsurprising that focus appears to be

Table 3 The effect of lymph node revealing solutions on the size of lymph nodes

<table>
<thead>
<tr>
<th>Lymph node revealing solution</th>
<th>Control group</th>
<th>Study group</th>
<th>Statistically significant difference?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone25</td>
<td>Average diameter 2.7 mm</td>
<td>Average diameter 2.0 mm</td>
<td>–</td>
</tr>
<tr>
<td>Acetone, IPA and oil26</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acetone and xylene27</td>
<td>9.7% nodes ≤2 mm, 10% metastatic nodes ≤2 mm</td>
<td>83.6% nodes ≤2 mm, 0.6% metastatic nodes ≤2 mm</td>
<td>–</td>
</tr>
<tr>
<td>Acetone, alcohol and xylene27</td>
<td>4.8% nodes <5 mm, 100% metastatic nodes >5 mm</td>
<td>89% nodes <5 mm, 40% metastatic nodes <5 mm</td>
<td>–</td>
</tr>
<tr>
<td>Acetone, alcohol and xylene27</td>
<td>–</td>
<td>50% nodes <1 mm, 82% nodes <2 mm, 83% metastatic nodes <3 mm</td>
<td>–</td>
</tr>
<tr>
<td>Acetone, alcohol and xylene28</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol29</td>
<td>–</td>
<td>88.6% nodes ≤2 mm, 78.6% metastatic nodes ≤2 mm</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol30</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol31</td>
<td>–</td>
<td>75.5% metastatic nodes ≤5 mm, 24.5% metastatic nodes >5 mm</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol and xylene31</td>
<td>49.5% nodes <4 mm, 14.8% metastatic nodes <4 mm</td>
<td>77.9% nodes <4 mm</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol and xylene32</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol and xylene31</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol and xylene17</td>
<td>–</td>
<td>77% of metastatic nodes ≤5 mm, In 7 cases metastases only found in nodes ≤5 mm</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol and xylene20</td>
<td>–</td>
<td>94% nodes ≤5 mm, 6% nodes >6 mm, 71.8% metastatic nodes ≤5 mm</td>
<td>–</td>
</tr>
<tr>
<td>GEWF42</td>
<td>Mean diameter 6.8 mm (±4.13)</td>
<td>Mean diameter 4.2 mm (±3.46)</td>
<td>Yes (p<0.01)</td>
</tr>
<tr>
<td>GEWF46</td>
<td>Average diameter of metastatic nodes 7 mm (±4 mm), 41% nodes ≤5 mm</td>
<td>Average diameter of metastatic nodes 5 mm (±2 mm), 60% nodes ≤5 mm</td>
<td>Yes (0.046)</td>
</tr>
<tr>
<td>GEWF41</td>
<td>–</td>
<td>Diameter 0.5–7.0 mm</td>
<td>–</td>
</tr>
<tr>
<td>GEWF40</td>
<td>Mean diameter 0.429 mm (minimum 0.1 mm), All nodes >0.9 mm identified by standard technique</td>
<td>Mean diameter 0.268 mm (0.2–0.9 mm), Mean diameter metastatic nodes 0.35 mm</td>
<td>Yes (p<0.000001)</td>
</tr>
<tr>
<td>GEWF49</td>
<td>Mean diameter metastatic nodes 0.568 mm, 26% nodes ≤5 mm identified by standard practice</td>
<td>Diameter 0.5–7.0 mm</td>
<td>–</td>
</tr>
<tr>
<td>GEWF39</td>
<td>Median diameter non-metastatic nodes 6 mm, Median diameter metastatic nodes 9 mm</td>
<td>Median diameter non-metastatic nodes 4 mm, Median diameter metastatic nodes 6 mm</td>
<td>Yes (p<0.001)</td>
</tr>
<tr>
<td>GEWF35</td>
<td>–</td>
<td>86% nodes (246/286) ≤3 mm, 11.5% nodes (33/286) 3–6 mm, 1.4% nodes (4/286) >6 mm, 6 metastatic nodes ≤3 mm (5 from neoadjuvant therapy cases)</td>
<td>–</td>
</tr>
<tr>
<td>GEWF41</td>
<td>Mean diameter 4.3 mm</td>
<td>Mean diameter 2.5 mm</td>
<td>–</td>
</tr>
<tr>
<td>GEWF44</td>
<td>Mean diameter 2.6 mm (1–15 mm)</td>
<td>Mean diameter 2.1 mm (1–4 mm)</td>
<td>No (p<0.11)</td>
</tr>
</tbody>
</table>

*Only assessed 30.5% of cases in the study group.

GEWF, glacial acetic acid, ethanol, water and formalin.

References

Box 1 Types of bias within the literature

- Anatomical variation in numbers of lymph nodes within the colorectum
- Suboptimal underlying manual dissection practice
- Inappropriate or unclear sample size
- Unclear or unbalanced study groups
- No sample size calculation
- Exclusion criteria unclear or absent
- No randomisation used/strategy unclear
- Inability to use blinding
- No statistics used or described
- Statistics used but methods not defined or discussed
- Intervention and comparison compared during different study periods
- Unclear or varying fixation time
- Unclear length of time in lymph node revealing solution
- Lengthy/unclear timescale of study
- Staff allowed to choose which technique to use

CONCLUSIONS

As yet, there is no clear evidence to indicate whether one lymph node revealing solution is better than another from the current literature; however, the use of carcinogenic chemicals is inappropriate in terms of health and safety. Lengthy lymph node revealing techniques which add significant reporting delays are also said to be expensive.53–55

Toxicity

Many older studies used noxious substances, most notably the aromatic hydrocarbon xylene.17–22,28,30–34 Xylene was once ubiquitous in histopathology laboratories as a clearing agent where it is quick, cheap, easy to prepare and handle.18,39,41

while GEWF was easier to use with better results. GEWF could be further investigated with appropriately designed studies, adopting randomisation of cases and minimisation of any potential bias which has been an issue in the existing literature. It is difficult to determine whether the use of GEWF or any other lymph node revealing solution leads to upstaging from node-negative to node-positive; bias in existing studies limits their conclusions. Until evidence can show that the use of lymph node revealing solutions significantly affects patient management, there is no evidence to recommend its use to the patient has yet been proven. The next steps should be to design appropriate studies in order to look for statistically significant differences in lymph node harvest associated with the use of these solutions. This would help to test the hypothesis that the use of lymph node revealing solutions contributes to patient management and would ensure that the most appropriate evidence-based treatment options are available to patients.

REFERENCES

Take home messages

- The use of lymph node revealing solutions leads to a significant increase in the number of harvested lymph nodes in colorectal carcinoma resection specimens.
- The use of lymph node revealing solutions leads to detection of significantly smaller lymph nodes and may lead to upstaging, which can change patient management by prompting adjuvant therapy. It has yet to be shown whether these findings have any clinical significance and therefore whether they can enhance patient management.
- Glacial acetic acid, ethanol, water and formalin are a safe and efficient lymph node revealing solution and its potential utility should be investigated further. Other older lymph node revealing solutions such as xylene have cost implications—in terms of finance, turnaround times and health effects; therefore, studies of their use are no longer relevant to modern practice.

Acknowledgements

The authors are grateful to Dr Garry Dix for his comments on the final formatting of the manuscript.

Contributors

The concept for this review was created by JH and IR. JH prepared the final version.

Competing interests

The research required during the preparation of this script also formed part of a body of work leading to the submission of a Professional Doctorate thesis by JH.

Provenance and peer review

Not commissioned; externally peer reviewed.
Review

Lymph node revealing solutions in colorectal cancer: should they be used routinely?

Joanne Horne, Adrian C Bateman, Norman J Carr and Isobel Ryder

doi: 10.1136/jclinpath-2013-202146

Updated information and services can be found at:
http://jcp.bmj.com/content/67/5/383

References

These include:

This article cites 46 articles, 2 of which you can access for free at:
http://jcp.bmj.com/content/67/5/383#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Editor's choice (131)
- Immunology (including allergy) (1664)
- Colon cancer (231)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/