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AbsTrACT
Programmed death ligand 1 (PD-L1) is the principal 
ligand of programmed death 1 (PD-1), a coinhibitory 
receptor that can be constitutively expressed or induced 
in myeloid, lymphoid, normal epithelial cells and in 
cancer. Under physiological conditions, the PD-1/PD-L1 
interaction is essential in the development of immune 
tolerance preventing excessive immune cell activity that 
can lead to tissue destruction and autoimmunity. PD-L1 
expression is an immune evasion mechanism exploited 
by various malignancies and is generally associated with 
poorer prognosis. PD-L1 expression is also suggested as 
a predictive biomarker of response to anti-PD-1/PD-L1 
therapies; however, contradictory evidence exists as to 
its role across histotypes. Over the years, anti-PD-1/PD-
L1 agents have gained momentum as novel anticancer 
therapeutics, by inducing durable tumour regression in 
numerous malignancies including metastatic lung cancer, 
melanoma and many others. In this review, we discuss 
the immunobiology of PD-L1, with a particular focus on 
its clinical significance in malignancy.

InTroduCTIon 
Programmed death ligand 1 (PD-L1), otherwise 
known as B7-H1 or CD274, is the first functionally 
characterised ligand of the coinhibitory programmed 
death receptor 1 (PD-1). Together with its cognate 
ligand PD-L2, PD-L1 plays a key role in maintaining 
peripheral and central immune cell tolerance through 
binding to the PD-1 receptor.1 

sTruCTure
PD-L1 is encoded by the PDCDL1 gene and is found 
on chromosome 9 in humans at position p24.1.2 First 
described by Dong et al in 1999 as B7-H1, PD-L1 
was recognised as the third member of the B7 protein 
family, displaying a 15%–20% homology with B7.1 
and B7.2 proteins.3 The full length of PD-L1 is 
encoded within seven exons, corresponding to a 
40 kDa protein of 290 amino acids. PD-L1 is a type 1 
transmembrane protein and consists of IgV-like and 
IgC-like extracellular domains, a hydrophobic trans-
membrane domain and a short cytoplasmic tail made 
from 30 amino acids, with unclear signal transduc-
tion properties.3 4

expressIon of pd-L1
PD-L1 expression can be constitutive or induc-
ible. Constitutive, low-level PD-L1 expression can 
be found, on resting lymphocytes, antigen-pre-
senting cells (APCs) and in corneal, syncytiotro-
phoblastic and Langerhans’ islet cells where it 
contributes to tissue homeostasis in proinflamma-
tory responses.1 PD-L1 confers certain tissues such 

as placenta, testis and the anterior chamber of the 
eye an ‘immune privileged’ status, where inoculation 
of exogenous antigens is tolerated without induc-
tion of an inflammatory/immune response.5 In the 
context of inflammation and/or infection, PD-L1 is 
induced as a suppressive signal on haematopoietic, 
endothelial and epithelial cells.6 PD-L1 expres-
sion is primarily influenced by toll-like receptors 
(TLRs), a subtype of non-catalytic receptors, highly 
expressed in APCs and activated by pathogen-asso-
ciated molecular patterns. TLR-mediated regulation 
of PD-L1 relies on the activation of the MEK/ERK 
kinases, which enhance PD-L1 messenger RNA 
(mRNA) transcription via nuclear factor kappa 
B. Interferon-γ (IFN-γ) receptors 1 and 2 are also 
implicated in regulating PD-L1 expression, largely 
through Jak/STAT-mediated activation of IRF-1. 
Interferon-mediated activation of Jak/STAT can 
also up-regulate PD-L1 expression through the 
MEK/ERK and the phosphatidyl-inositol 3 kinase 
(PI3K)/AKT pathway, which exerts a permissive 
role on PD-L1 transcription through phosphoryla-
tion of mammalian target of rapamycin.7

In carcinogenesis, PD-L1 can be overexpressed as a 
result of driver oncogenic events. Epidermal growth 
factor receptor (EGFR) mutations, for instance, 
positively correlate with PD-L1 expression in lung 
cancer, with EGFR inhibitors acting as repressors 
of PD-L1 transcription.8 In phosphatase and tensin 
homolog (PTEN)-mutant tumours, PD-L1 overex-
pression is sustained by unrestrained activation of 
the PI3K/AKT pathway.9 In T cell lymphoma, the 
nucleophosmin (NPM)/anaplastic lymphoma kinase 
(ALK) fusion gene up-regulates PD-L1 via constitu-
tive STAT3 activation.10

pd-L1/pd-1 ACTIvATIon And sIGnAL 
TrAnsduCTIon
The biological functions of PD-L1 depend on 
binding with PD-1 (CD279), a 288 amino acid 
long type 1 transmembrane receptor encoded by 
the PDCD1 gene and physiologically expressed on 
lymphocytes and myeloid cells (figure 1). PD-1 is 
composed of an extracellular IgV-like domain and 
a transmembrane region. Its intracellular tail is 
composed of tyrosine based switch motif (ITSM) 
and immune receptor tyrosine based inhibitory 
motif sequences.11

On ligation with PD-L1, recruitment of 
Src homology 2 domain containing phospha-
tases 1 and 2 (SHP-1/SHP-2) to the ITSM causes 
dephosphorylation of signalling kinases such as 
CD3ζ, PKCθ and ZAP70 resulting in a global 
inhibitory action of T cell expansion.12 Such inhib-
itory response is secondary to inactivation of the 
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PI3K-Akt and Ras-MEK-ERK cascades.10 Casein kinase 2 is a 
target of SHP-2. Casein kinase 2 (CK-2) dephosphorylation leads 
to unrestrained activation of PTEN, a physiological PI3K-Akt 
signalling antagonist.13 The inhibitory effect of PD-1 on the 
Ras-MEK-ERK cascade mostly depends on direct inhibition of 
Ras and dephosphorylation of phospholipase Cγ.14–16

funCTIons of pd-L1
Central and peripheral tolerance
The PD-1/PD-L1 pathway is crucial for the development of 
immune tolerance, a process of negative selection of auto-
reactive lymphocytes taking place in primary (central toler-
ance) and secondary lymphoid organs (peripheral tolerance).17 
High PD-L1 expression is in fact demonstrated within the 
thymus and on dendritic cells, where the PD-L1/PD-1 inter-
action prevents the proliferation and differentiation of naïve 
T cells.18 19 Knock-out of PD-1/PD-L1 leads to autoimmunity 
in animal models with lupus-like arthritis, glomerulonephritis 
and diabetes.20 21 In humans, immune-related toxicity is a 

recognised class effect of anti-PD-1/PD-L1 antibodies, where 
colitis, endocrinopathy and immune/inflammatory dermatoses 
are common complications.22

Immune exhaustion
Immune exhaustion, that is, the progressive impairment of 
effector T cell function following persistent antigen presen-
tation, is a physiological mechanism that prevents tissue 
destruction in chronic infection.23 A cardinal feature of T cell 
exhaustion includes the induction of various coinhibitory path-
ways including PD-1/PD-L1.23 HIV-specific CD4/CD8 cells 
coexpress PD-1, and a similar role for PD-1/PD-L1 has been 
found in viral hepatitis and tuberculosis,24–26 where impair-
ment of effector T cell function is induced through apoptosis, 
inhibition of T cell replication and maturation27–29 as well as 
parallel induction of regulatory T cells.30

regulation of the anticancer immune response
Persistent up-regulation of PD-1 is commonly found in 
tumour-infiltrating lymphocytes, where PD-L1 expression is 

figure 1 A schematic representation illustrating the signalling molecules that are linked with or influenced by the programmed death 1 (PD-1)/
programmed death ligand 1 (PD-L1) interaction, as well as the cellular processes they affect.
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exploited by malignant cells to avoid immune destruction.31 32 
Interestingly, PD-1 activation by PD-L1 up-regulates Slug, Snail 
and Twist through the MAPK/ERK pathway suggesting a 
link between tumour invasiveness and antitumour immune 
control.33–36 PD ligands are also regulated by hypoxia-inducible 
factor-1α implying an interplay with neoangiogenesis, an inde-
pendent hallmark of cancer progression.4 37

pd-L1 expressIon In mALIGnAnCy
Expression of PD-L1 either in tumour or in infiltrating immune 
cells has been verified predominantly by immunohistochemistry 
(IHC) in a variety of tumours, suggesting a role for the PD-1/
PD-L1 axis as a prognostic trait and therapeutic target across 
multiple histotypes. However, IHC-based detection of PD-L1 
expression is constrained by preanalytical and analytical vari-
ability including heterogeneity in antibody clones, scoring meth-
odology and intrinsic biological variation in PD-L1 expression 
due to the type of specimen analysed (surgical resection vs biopsy, 
primary tumour vs metastasis, archival vs fresh frozen) as well as 
prior treatment status.38 39 The complex interplay between these 
factors plays a major role in the diffusion and clinical application 
of PD-L1 IHC assays as predictive biomarkers of response to 
PD-1/PD-L1 inhibitors.

nsCLC
Approximately 20%–30% of non-small cell lung cancer (NSCLC) 
express PD-L1 in >50% of the sampled tumour and infiltrating 
immune cells.40 41 PD-L1-positive NSCLCs are characterised 
by a fainter lymphocytic infiltrate42 and shorter disease-free 
survival.43 However, in a large study of 982 patients prospec-
tively accrued in three adjuvant chemotherapy trials, PD-L1 
expression in either tumour or stroma did not predict survival 
despite the use of different thresholds.44

PD-L1 expression enriches for responses to anti-PD-1/
PD-L1 antibodies. In a study of 184 NSCLC cases treated with 

atezolizumab, clinical responses correlated with the presence of 
PD-L1-positive infiltrating immune cells.45 In the KEYNOTE-
001, 010 and 024 studies of pembrolizumab in advanced NSCLC, 
higher tumoural PD-L1 expression predicted for better progres-
sion-free, overall survival and response rates across lines of treat-
ment, with similar results observed in non-squamous NSCLC 
treated with nivolumab.40 46–48 While a number of studies have 
suggested interassay and biological heterogeneity in PD-L1 expres-
sion, IHC testing has, nevertheless, rapidly emerged as a stratifying 
biomarker in patients receiving PD-1/PD-L1-targeted checkpoint 
inhibitors, where harmonisation efforts are underway to promote 
interassay reliability and reproducibility.49 50

melanoma
The prevalence of PD-L1 expression in melanoma ranges from 
24% to 49%,51–53 being highest (~60%) in tumours arising from 
chronic sun-damaged skin and lowest in uveal melanoma (10%).54 
PD-L1 independently predicts for poorer prognosis, being 
strongly correlated to tumour thickness, lymphatic and visceral 
spread, and in BRAF-mutant melanoma, PD-L1 overexpression 
is an adaptive feature of resistance to BRAF inhibitors.55 56 In 
the KEYNOTE-001 trial, patients with PD-L1-overexpressing 
tumours had response rates >50% and longer progression-free 
and overall survival.57 However, the durable responses observed 
in PD-L1-negative tumours led to unrestricted licensing of anti-
PD-1/PD-L1 therapies irrespective of PD-L1 status.

epithelial ovarian cancer (eoC)
PD-L1 expression is common to 70% of EOC and predicts for 
worse 5-year survival rates (53%) compared with PD-L1-negative 
tumours (80%). PD-L1 inversely correlated with CD8+ T cell 
infiltrate suggesting its role in impairing the antitumour cyto-
toxic response, a renowned positive prognostic trait in EOC.58 59 
Mechanistic studies have shown induction of PD-L1 expression 
to attenuate the cytolytic activity of CD8+ T cells in vitro and 

Table 1 The principal PD-1/PD-L1 checkpoint inhibitors currently approved and in clinical development

nivolumab 
(bms-936558)

pembrolizumab   
(mK-3475)

Atezolizumab 
(mpdL3280A)

durvalumab 
(medI4732)

Avelumab 
(msb0010718C)

pidilizumab
(CT-011)

Target PD-1 PD-1 PD-L1 PD-L1 PD-L1 PD-1

Monoclonal antibody class Fully human IgG4 Humanised IgG4k Humanised IgG1 Engineered IgG1k Fully human
IgG1

Humanised 
IgG1k

Stage of clinical 
development

FDA approved
Phase III

FDA approved
Phase III

FDA approved
Phase III

FDA approved
Phase III

FDA approved
Phase III

Phase II

Approved indication Melanoma (2014),
NSCLC (2015), RCC (2015),
urothelial carcinoma 
(2017),
MMR-d colorectal cancer 
(2017)

Melanoma (2014),
NSCLC (2016),
HNSCC (2016),
Hodgkin’s lymphoma 
(2017),
MMR-d tumours (2017)

Urothelial carcinoma 
(2016),
NSCLC
(2016)

Urothelial carcinoma 
(2017)

Merkel cell carcinoma 
(2017)

Companion PD-L1 assay Dako 28–8 (rabbit) Dako 22c3 (mouse) Ventana SP142 (rabbit) Ventana SP263 (rabbit) NA

Target cells TC TC
IC

TC
IC

TC
IC

Cut-off for positivity NSCLC >1%–5%
RCC >5%

NSCLC >1% TC any IC 
(as second-line therapy)

Urothelial >5% IC
NSCLC >10% IC or
>50% TC

Urothelial:
>25% TC or IC if IC 
present in>1% of 
specimen
>25% TC or 100% IC 
if IC present in <1% of 
specimen
NSCLC:
>25% TC

FDA, Food and Drug Administration; HNSCC, head and neck squamous cell carcinoma; IC, infiltrating cells; MMR-d, mismatch repair deficient; NSCLC, non-small cell lung cancer; 
PD-1, programmed death 1; PD-L1, programmed death ligand 1; RCC, renal cell carcinoma; TC, tumour cells.
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promote the peritoneal spread of EOC.60 PD-L1 expression 
strongly depends on IFN-γ release within the tumour microen-
vironment: genetic silencing of the IFN-γ receptor 1 decreases 
tumoural PD-L1 expression and improves survival in animal 
models.61

breast cancer
PD-L1 expression is observed in invasive lobular and ductal 
breast cancer, where it is associated with local recruitment of 
PD-L1-positive CD8+ T lymphocytes.62 63

Analysis of RNA-sequencing datasets has confirmed PD-L1 
mRNA overexpression to be associated with a number of 
adverse prognostic factors such as negative hormone receptor 
status, Her-2-positive status, higher tumour grade, stage and 
proliferative index.64 PD-L1 expression is typical of 20% of 
triple-negative breast cancer (TNBC) as a result of constitutive 
transcriptional activation secondary to PTEN loss.65 PD-L1-over-
expressing TNBC is molecularly defined by abundant cytotoxic 
T cell infiltrate and higher complete response rates to neoadju-
vant chemotherapy,64 findings that are in support of the develop-
ment of anti-PD-1/PD-L1 inhibitors in TNBC.66

Gastrointestinal malignancies
In gastro-oesophageal cancers, PD-L1 status is a nega-
tive predictor of outcome and is associated with nodal and 
visceral metastases and a more intense regulatory T cell infil-
trate.67 68 Response rates to pembrolizumab in PD-L1-overex-
pressing gastro-oesophageal tumours approach 20%.69

In colorectal cancer, tumoural expression of PD-L1 is infre-
quent (5%) and strongly associated with PD-1-positive lympho-
cytic infiltrate and mismatch-repair deficiency (MMR-d), 
features preluding to high immunogenicity and responsiveness 
to anti-PD-1/PD-L1 therapies.70 71

In cholangiocarcinoma, PD-L1 expression ranges from 11% to 
30% and is linked to worse prognosis.72 73 The prevalence of 
PD-L1 expression is 20% in hepatocellular cancer and correlates 
with higher alpha-fetoprotein levels, vascular invasion, poor 
differentiation and hepatic reserve.74 75

Pancreatic cancer is poorly immunogenic due the presence of 
a dense immunosuppressive desmoplastic microenvironment. 
PD-L1 expression is scarce, and responses to single agent PD-1/
PD-L1 targeted inhibitors are low.76–78

other malignancies
The range of tumours where the PD-1/PD-L1 pathway is 
emerging as a potential therapeutic target is rapidly expanding. 
PD-L1 overexpression has been shown to identify a group 
of 15%–20% of head and neck squamous cell carcinomas 
(HNSCCs) with poorer prognosis and enhanced chemoresis-
tance.79 80 In urothelial malignancies, PD-L1 expression is low 
in tumour cells (4%) but higher in infiltrating lymphocytes 
(34%), a trait that predicts for improved survival in metastatic 
patients.81–83 B cell lymphomas rely heavily on the PD-1/PD-L1 
immune checkpoint as a tumorigenic mechanism. In Hodgkin 
lymphoma (HL), Reed-Sternberg cells are commonly character-
ised by PD-L1 gene amplification, justifying the response rates 
in excess of 85% observed in chemorefractory HL treated with 
nivolumab.84 85

PD-L1 is involved in avoidance of tumour rejection in non-HL 
and in different subtypes of leukaemia.85 Blast cells are PD-L1 
immunopositive in acute myeloid leukaemia, where PD-L1 
expression attenuates antitumour cytolysis and predicts for a 
higher risk of relapse.86

pd-1/pd-L1 InhIbITors
The PD-1/PD-L1 interaction is an established therapeutic target 
in immuno-oncology which led to ‘Breakthrough of the Year’ 
status in 2013.87 Selective inhibition of PD-1 or PD-L1 is not 
biologically identical due to the distinct spectrum of molecular 
interactions that characterise the ligand and receptor. Inhibi-
tion of PD-1, for instance, halts immunosuppressive signals 
derived from PD-L1 and PD-L2, whereas blockade of PD-L1 
exerts inhibitory effects on PD-1 and B7.1 receptors.88 In terms 
of clinical efficacy, therapeutic equivalence between the two 
approaches is presumed but not definitely proven.

As shown in table 1, on the basis of the significant survival 
benefit and durable responses observed in phase II/III studies, 
antibodies inhibiting PD-1/PD-L1 have become, to date, clini-
cally approved therapies in seven oncological indications.

However, a number of challenges still exist in optimising the 
delivery of PD-1/PD-L1 inhibitors and expanding their use as 
safe and effective therapies across indications.

In cancer, responses are limited to a fraction of patients. 
Combined inhibition of PD-1 and CTLA-4 has resulted in 
doubling of response rates at the price, however, of increased 
toxicity.51 These results have paved the way to a number of 
combination studies with other systemic anticancer therapies 
and locoregional treatments.48

An improved characterisation of predictive correlates of 
response to PD-1/PD-L1 inhibitors is expected to improve 
patient selection and facilitate the delivery of personalised 
immunotherapy. Besides harmonisation of PD-L1 IHC testing, 
prediction of response will require multitechnology inte-
gration to comprehensively evaluate tumour-intrinsic and 
tumour-extrinsic factors, including somatic mutational load, 
MMR-d status, proinflammatory signatures and many other 
factors.89

Lastly, the non-oncological development of PD-1/PD-L1 
inhibitors in disease areas with a paucity of effective therapeutic 
targets including chronic infection and immune pathology might 
further expand the clinical relevance of PD-L1 as a therapeutic 
target in human disease.90
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