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AbsTRACT
Fibroadenomas of the breast are benign fibroepithelial 
tumours most frequently encountered in women of 
reproductive age, although they may be diagnosed at 
any age. The fibroadenoma comprises a proliferation 
of both stromal and epithelial components. The 
mechanisms underlying fibroadenoma pathogenesis 
remain incompletely understood. In the clinical setting, 
distinguishing cellular fibroadenomas from benign 
phyllodes tumours is a common diagnostic challenge 
due to subjective histopathological criteria and 
interobserver differences. Recent sequencing studies 
have demonstrated the presence of highly recurrent 
mutations in fibroadenomas, and also delineated the 
genomic landscapes of fibroadenomas and the closely 
related phyllodes tumours, revealing differences at 
the gene level, which may be of potential adjunctive 
diagnostic use. The present article provides an overview 
of key studies uncovering genetic and genomic 
abnormalities in fibroadenomas, from initial karyotype 
reports revealing myriad cytogenetic aberrations to 
next-generation sequencing-based approaches that led 
to the discovery of highly recurrent MED12 mutations. 
A thorough understanding of these abnormalities is 
important to further elucidate the mechanisms by which 
fibroadenomas arise and to refine diagnostic assessment 
of this very common tumour.

InTRoduCTIon
Breast fibroadenomas (FAs) are common, benign 
fibroepithelial lesions composed of stromal and 
epithelial components, with intralobular stroma 
enclosing glandular spaces lined by luminal epithe-
lium and myoepithelium. This tumour is most 
frequently encountered in adolescent girls and 
young women within the first three decades of life, 
although it may also be diagnosed at any age.1–3 FAs 
have been clinically observed to be hormone depen-
dent—stimulated by oestrogen, progesterone and 
lactation during pregnancy, as well as shrinking 
during menopause.4–6 Typically, they present as 
slow-growing, firm and solitary nodules, although 
synchronous and metachronous multifocal lesions 
have also been described in the literature.7 While 
FAs are benign neoplasms, one study suggested 
that they are an independent risk factor for breast 
cancer,8 while another report provided evidence 
that they are associated with a twofold increase in 
relative risk of developing invasive breast carcinoma 
after 20 years.9 Although the genetic risk factors for 
FAs are currently unknown, patients with Carney 
complex may develop bilateral or multiple myxoid 
FAs, and bilateral and/or multiple FAs have been 

significantly associated with family history.10 11 In 
renal transplant patients, the use of cyclosporin has 
been linked to the development of bilateral and/or 
multiple FAs.12–14 In this review, we appraise the 
literature on the genetics and genomics of breast 
FAs.

CyTogeneTIC AbeRRATIons
In the early 1990s, structural abnormalities 
including rearrangements of chromosomes 1, 6, 7, 
8, 12 and 15 were described in isolated case reports 
of breast FAs, together with monosomy of chromo-
somes X, 12 and 21 and trisomy of chromosomes 
5, 6, 11, 17 and 20.15–20 Of particular interest was 
the 12q13–15 region, which was also implicated in 
several other benign tumours in different anatom-
ical sites such as lipomas, uterine leiomyomas and 
pleomorphic adenomas.21–23 Non-random involve-
ment of alleles found in chromosomes 1 and 17 were 
previously reported in breast cancer,24–31 and it was 
thought that there could be overlapping mutations 
driving the development of FAs as well.32 However, 
no consensus could be achieved regarding specific 
mutations that result in the development of FAs.

This changed in 1995 when Schoenmakers  
et al identified a candidate gene named HMGI-C 
within the multiple aberration region on chromo-
some 12q15 that frequently harbours breakpoints 
in benign solid tumours, which was mutated in 
FA together with seven other tumour types.33 In a 
later clinical case report of an intracanalicular FA 
showing a clonal chromosomal aberration t(4;12), 
Staats et al used fluorescence in situ hybridisa-
tion (FISH) analysis for the chromosomal region 
12q14–15 and narrowed down the breakpoint to 
a 230 kb fragment that belonged to the HMGI-C 
gene.34 However, this was only shown to be true in 
a single case of FA, and thus the involvement of this 
gene was weakly supported at best. Given the tech-
nologies of the 1990s, the approaches available to 
understand the genetics of FAs were largely limited 
to karyotype studies, positional cloning and FISH 
analysis, which could not search the entire genome 
efficiently to pinpoint specific genetic loci involved 
in FAs.

MICRosATellITe InsTAbIlITy And loss of 
heTeRozygosITy
As technological advancements in biological assays 
emerged towards the later part of the 1990s, Deng 
et al reported that loss of heterozygosity (LOH) 
was detected in morphologically normal lobules 
found beside malignant breast tumours, with the 
most frequent aberration found in chromosome 
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3p22–25. Of 10 breast carcinomas with this aberration, 6 cases 
showed the same LOH within normal lobules, suggesting the 
presence of a tumour suppressor gene at 3p22–25.35 Yet, it was 
shown by Lizard-Nacol et al that in FAs, there was an absence of 
many genetic alterations such as gene amplification commonly 
found in breast carcinomas.36 Combining this with previous 
studies that reported associations between FAs and breast cancer 
risk,37–40 McCulloch et al decided to study the incidence of 
microsatellite instability (MSI) and LOH in FAs and showed 
that it was low at 11 different loci: TPOX, D3S1514, D3S1675, 
FABP, D4S243, D9S254, TH01, D13S289, SCA3, D17S559 and 
D17S855.41 Additionally, epithelial cells in a single case of FA 
in a series of benign breast diseases preceding invasive breast 
cancer were shown to be negative for LOH at chromosome 3p.42 
The markers used for this subsequent study included D3S1766, 
D3S1612, D3S1244, ITIH-1, D3S4102 and LUCA2.1. Later 
reports, such as by Franco et al, also verified that LOH was 
indeed a rare feature in FAs,43 as opposed to phyllodes tumours 
that displayed extensive LOH on genome-wide single-nucleotide 
polymorphism (SNP) array analysis.44 Although more specific 
regions of the genome could be assayed to search for abnormali-
ties, MSI and LOH were features hardly found in FAs, and hence 
studies focusing on them generated little knowledge in terms of 
the pathological mechanisms that underlie FAs.

TP53 And ras MuTATIons
The unequivocal importance of the tumour suppressor gene 
TP53 is clearly demonstrated in its abrogation in over half of all 
human sporadic cancers, in spontaneous tumour development 
in Trp53-knockout mice as well as in patients with Li-Frau-
meni syndrome who inherit a mutant TP53 allele.45 46 Over the 
course of tumour development, sporadic TP53 mutations may 
arise, which are quickly followed by LOH, leading to total p53 
deficiency. This accelerates both initiation and progression of 
tumour growth, and tumours displaying a lack of p53 are often 
characterised by more aggressive characteristics such as local 
invasiveness and metastatic ability.47–50

TP53 was first examined in FAs over two decades ago by Kout-
selini et al who studied expression of this gene in cytological 
specimens from both benign and malignant breast tumours using 
a monoclonal antibody (mAb) that detected p53. In 38 out of 
39 cases (97.4%), benign epithelial breast cells obtained from 
FAs, fibrocystic change as well as smears from nipple discharge 
stained negative for p53.51 This was contradictory to a study 
4 years later, which showed that one in eight FAs exhibited a 
non-silent TP53 mutation.52 This was then opposed by Franco et 
al who demonstrated that there was an absence of TP53 muta-
tions in FAs from women who remained unaffected by breast 
cancer over an average follow-up period of 10 years.43 Franco 
et al went on to demonstrate that TP53 gene mutations were 
absent in FAs, regardless of whether or not they were diagnosed 
in women affected by breast carcinoma.53 Lastly, the findings by 
Schneider et al showed that p53 mRNA and protein levels in 
FAs were higher compared with adjacent normal breast tissue 
in women of reproductive age, providing further conflicting 
evidence about p53 in this disease.54 Taken together, it can be 
concluded that while the role of p53 has been thoroughly estab-
lished in human cancers, its implication in the pathogenesis and 
development of FAs was unproven.

Mutations in the ras oncogenes H-ras, K-ras and N-ras have 
long been known to contribute towards uncontrolled cell prolif-
eration ultimately leading to tumour development.55 As small 
GTPases, ras proteins alternate between two states: the inactive 

guanosine diphosphate-bound and the active guanosine triphos-
phate (GTP)-bound conformations.56 57 They regulate cell fates 
through the coupling of receptor activation with downstream 
effector pathways that elicit cellular responses such as increased 
proliferation, differentiation and survival.58–60

Only 2 out of 10 (20%) FAs were scored positively when 
stained using a ras-sensitive mAb, as compared with 19 out of 30 
(63.3%) infiltrating ductal carcinomas. Interestingly, these two 
were multiple FA cases.61 Using a combination of PCR amplifica-
tion and allele-specific oligonucleotide hybridisation techniques, 
Kumar et al found that out of seven rat FAs induced by neonatal 
exposure to nitrosomethylurea, H-ras was mutated in three of 
them (42.9%), while K-ras was mutated in one case (14.3%).62 
Although FAs exhibited ras oncogene activation, it was proven 
to be within the basal levels of ras activation in normal breast, 
brain and peripheral nerve tissues.63–65 On a related note, DNA 
microarray analysis revealed that the Ras homologue enriched in 
brain (RHEB) protein, also involved in cell growth and differen-
tiation, was expressed at levels more than twofold higher in FAs 
than in normal tissues. The average RHEB:β-actin ratio of FAs 
was found to be two times greater than that in infiltrating ductal 
carcinomas, suggesting RHEB immunohistochemical staining 
as a possible secondary diagnostic tool to distinguish between 
the two.66 However, further supporting literature on the role of 
RHEB in FAs is scant. In summary, the ras oncogenes and related 
homologues have not been shown to play consequential roles 
in FAs.

hoRMone InvolveMenT
Hormones such as oestrin, now more commonly known as 
oestrogen, were implicated in the development of breast 
lesions including gynaecomastia and FAs as early as over 80 years 
ago.67 When nine benign breast conditions including eight fibro-
cystic lesions and one FA were processed into slices and cultured 
in medium, the addition of prolactin (PRL) caused increased 
DNA synthesis as observed by a higher rate of incorporation 
of radioactive thymidine, elegantly showing PRL as a possible 
mitogenic stimulant in FAs.68 This stood in contrast to a study by 
Manni et al using the soft agar clonogenic assay: the only case of 
FA included in the study did not respond to PRL administration, 
resulting in no colony formation.69 This was supported by the 
findings of Kumar et al who observed that 2 cases of FA stained 
negative for tissue-bound PRL, as opposed to 14 out of 15 cases 
of apocrine metaplasia of the breast, which exhibited strong PRL 
staining.70

Compared with normal breast tissue, FAs were also rigor-
ously proven to possess a higher expression level of the prolactin 
receptor (PRLR) gene by multiple methods including quantitative 
PCR, immunocytochemistry and immunohistochemistry.71–73 As 
the role of PRL receptors became gradually established in FAs, 
it started a hunt for mutations in the gene encoding these trans-
membrane proteins.

In a study involving 74 patients with multiple fibroadenoma 
(MFA) and 170 control subjects, Bogorad et al identified four 
patients harbouring a heterozygous SNP in exon 6 of the PRLR 
gene, which resulted in a substitution mutation changing isole-
ucine to leucine at position 146 of the PRLR extracellular 
domain. This single mutation was enough to confer constitu-
tive activity to the PRLR variant, confirmed by PRL-indepen-
dent functions of PRLR tyrosine phosphorylation, activation 
of signal transducer and activator of transcription 5 signalling, 
transcriptional activity towards a PRL-responsive reporter gene, 
and cell proliferation and protection from cell death.74 A further 
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study of 95 women with MFA by Courtillot et al from the same 
research group reported another SNP in exon 5 that encoded 
the amino acid substitution of isoleucine to valine at position 76 
of the PRLR. However, in their study cohort, only 15% of the 
MFA cases harboured PRLR that showed basal activity in vitro, 
raising questions about whether PRLR was widely involved in 
the aetiology of MFAs and whether it is a relevant inhibitory 
target for these patients.75

The third and definitive study by this group involving another 
71 women affected by MFA provided conclusive clinical 
evidence that gain-of-function PRL receptor variants PRLRI146L 
and PRLRI76V were indeed not associated with MFA risk. One 
gripping point raised was that although these variants’ gain-
of-function properties were ascertained in reconstituted cell 
systems, they were not replicable in ex vivo analysis in mammary 
tissues of mouse or human origin, which suggested that the 
cellular effect of these variants in vivo was not enough to result 
in mammary tumour development.76

MED12 MuTATIons
In a landmark study, the use of next-generation sequencing 
(NGS)-based exome sequencing led to the discovery of highly 
recurrent Mediator complex subunit 12 (MED12) somatic muta-
tions in FAs of the breast. These mutations were found in 4 out 
of an initial batch of 8 (50%) FA samples, before being further 
ascertained in another 54 out of 90 (60%) FAs (figure 1). Out of 
these 98 FAs sequenced, 41 of them (42%) had point mutations 
in codon 44 of exon 2 of the MED12 gene.77

The results from this paper were met with multiple studies in 
quick succession globally, confirming that MED12 mutations are 
found in up to 65% of FAs, with an overwhelming majority of 
them being located in codon 44 of exon 2.78–80 Laser microdis-
section studies have also revealed that the MED12 mutations are 
limited to the stromal compartment,77 81 with mutation status 
correlating with stromal but not epithelial protein expression.82 
This is supported by the fact that the histological pattern that 
most frequently harbours MED12 mutations is the intracanalic-
ular FA,79 81 which exhibits stroma growing into and compressing 
the epithelial compartment, stretching the ducts into elongated, 
arc-like formations.1 Collectively, this suggests that the initiation 
of FA development may likely be due to a MED12 mutation 

event within the stromal compartment, much like the uterine 
leiomyoma (UL) in which MED12 mutations were first found 
and have been established as integral for UL tumourigenesis.83 84 
In both FAs and ULs, there is a stark absence of recurrent point 
mutations other than in MED12, which suggests that MED12 
mutations might be sufficient for tumourigenesis in both tumour 
types. However, although there is high mutation frequency 
and extremely similar mutational patterns in the MED12 gene 
between FAs and ULs, MED12 mutations were only found in 
3 of 41 (7.3%) uterine leiomyosarcomas, a malignant tumour 
closely related to ULs.85 This contrasts against the persistently 
higher mutation frequency of MED12 in phyllodes tumours 
of all grades (although some studies have found a relatively 
lower frequency of MED12 mutations in malignant phyllodes 
tumours), the less innocuous fibroepithelial tumour regarded to 
be closely related to FAs. This suggests that MED12 mutations 
are key drivers behind the spectrum of breast fibroepithelial 
tumours from benign FAs to phyllodes tumours.78

Akin to the uterus, the breast is one of the main target sites 
for oestrogen,86 and given that the Mediator complex has been 
demonstrated to have cellular interactions with oestrogen recep-
tors α and β,87 MED12 mutations in intralobular stroma may be 
implicated in aberrant oestrogen signalling that ultimately leads 
to FA pathogenesis. A recent study by Lozada et al, however, 
has shown that myxoid FAs lack MED12 mutations, suggesting 
that this particular variant may arise through mechanisms inde-
pendent of MED12.88 The interaction of cellular MED12 with 
Cyclin C has been demonstrated to be dependent on the first 100 
amino acids in the primary structure of MED12, including those 
encoded by the entire exon 2. Somatic mutations in MED12 
exon 2 have been shown to adversely affect interactions between 
MED12 and Cyclin C-CDK8/CDK19, causing loss of Media-
tor-associated, Cyclin-dependent kinase (CDK) activity, resulting 
in RAD51B expression and eventual tumourigenesis.89 90 Within 
the CDK module of Mediator, Cyclin C, CDK8 and MED12 
are three subunits that are exclusively recruited in the presence 
of strong p21 transcriptional upregulation, which occurs down-
stream of the p53-dependent cell cycle arrest response.91 This 
further suggests that MED12 exon 2 mutations can be delete-
rious with regard to p53-dependent cell cycle arrest. Therefore, 
the tumourigenic impact of somatic MED12 mutations is likely 

figure 1 Fibroadenoma that on genomic analysis was found to have a single MED12 frameshift deletion. The fibroadenoma shows circumscribed 
borders and both pericanalicular and intracanalicular growth patterns (A). Higher magnification (B) shows hyalinised stroma around epithelial 
elements that are stretched into arc-like formations.
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Table 1 Key publications on genomic and genetic abnormalities reported in breast fibroadenomas

Calabrese  et al 
199115

Stephenson et al 
199217

Cavalli et al  199220 Rohen et al  199319 Leuschner et al 
199418

Ozisik et al 199432 Schoenmakers et 
al 199533

Staats et al 199634

Lizard-Nacol et 
al 199536

Deng et al  199635 McCulloch et al  
199841

Euhus et al 199942 Franco et al 200143 Wang et al 200644 Hand et al 198461 Kumar et al 199062

Koutselini et al 
199151

Millikan et al 
199552

von Lintig et al 
200063

Franco et al 200353 Eom et al 200866 Schneider et al 
200954

Welsch et al  197968 Manni et al 198669

Kumar et al  198770 Touraine et 
al 199871

Mertani et al 199872 Gill et al 200173 Bogorad et al 200874 Courtillot et al 201075 Chakhtoura et al 
201676

Lim et al 201477

Publications are colour coded according to the type reported: red—cytogenetic aberrations; yellow—microsatellite instability and loss of heterozygosity; blue—TP53 and ras 
mutations; purple—prolactin receptor mutations; green—MED12 mutations.

figure 2 Key genomic and genetic abnormalities reported in breast fibroadenomas. Findings are colour coded according to the type reported: 
red—cytogenetic aberrations; yellow—microsatellite instability and loss of heterozygosity; blue—TP53 and ras mutations; purple—prolactin receptor 
mutations; green—MED12 mutations. FA, fibroadenoma; HMGI-C, high mobility group protein; LOH, loss of heterozygosity; mAb, monoclonal 
antibody; qPCR, quantitative PCR; RHEB, Ras homology enriched in brain; SNP, single-nucleotide polymorphism.
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to be multifaceted, involving aberrant oestrogen signalling as 
well as attenuated cell cycle arrest, and thus warrants further 
investigations to better understand its full scope.

oTheR MuTATIons
Previously, somatic missense mutations in RARA were only 
reported in acute promyelocytic leukaemia that was refractory 
to treatment, as well as in other solid tumours at low frequen-
cies below 5%.92 Targeted deep sequencing of 21 FAs revealed 
mutations in the retinoic acid receptor alpha (RARA) gene to 
be highly clustered within the region that encodes the ligand-
binding domain, in 3 (14.3%) of these cases. On top of this, 
missense mutations were detected in FLNA, PCLO, CHD8 
and ROS1, while frameshift mutations were found in MLL2 
and PCNXL4.93 Taken together, the identification of recurrent 
MED12 and RARA mutations within the stromal compartment 
of FAs points towards clonality. This counters earlier investiga-
tions into the clonality of FAs, which used PCR and compar-
ative genomic hybridisation-based approaches to arrive at the 
conclusion that FAs are polyclonal.94–97 This disparity may be 
attributed to low stromal cellularity within the FAs that may 
have masked their true clonality, supported by the fact that FAs 
with high stromal cellularity or ‘phyllodal features’ were demon-
strated to be monoclonal.98 99

Among breast fibroepithelial tumours, mutations in FLNA, 
SETD2, MLL2, BCOR and MAP3K1 were observed to be more 
common in phyllodes tumours than FAs. In addition, borderline 
and malignant phyllodes tumours disclosed mutations in NF1, 
RB1, PIK3CA, EGFR, TP53 and ERBB4, which were largely 
absent in FAs and benign phyllodes tumours.93 These genomic 
differences may be of potential clinical use in distinguishing FAs 
from phyllodes tumours, an important separation as there are 
divergent management approaches. It is postulated that similar 
mutational profiles exist for cellular FAs, which represent a diag-
nostic difficulty in their distinction from phyllodes tumours, 
though specific data on cellular FAs remain pending.

Among breast papillary lesions that may occasionally display 
slight morphological similarity to fibroepithelial tumours, a 
high prevalence of PIK3CA/AKT pathway mutations has been 
found.100 There are currently no papers in the literature high-
lighting frequent mutations of PIK3CA and related genes in FAs. 
On the other hand, studies describing the presence of MED12 
mutations in intraductal papillomas are scant, with one report 
published this year showing a 0% mutation rate of MED12 in 
six intraductal papillomas.101 Furthermore, another recent publi-
cation demonstrated tubular, lactating and ductal adenomas to 
lack mutations in exon 2 of the MED12 gene, and that ductal 

adenomas showed recurrent mutations in GNAS and the PI3K–
AKT pathway.102 Ductal adenomas of the breast have been previ-
ously postulated to be closely related to or are in fact sclerosed 
intraductal papillomas.103

ConClusIon
Knowledge surrounding FA genetics and genomics has progressed 
rapidly over the last 20 years—from mostly karyotype studies 
and FISH analyses at the beginning to the NGS-based approaches 
today. Table 1 and figure 2 show a summary of the genetic and 
genomic discoveries in FAs. The next step forward will be to 
capture their genomic features for correlation with clinicopatho-
logical features, which will allow us to evaluate whether genomic 
data may be harnessed as a secondary adjunct to refine diag-
nostic assessment of fibroepithelial tumours. In particular, distin-
guishing cellular FA (figure 3) from benign phyllodes tumour is 
a common diagnostic challenge, which was brought to greater 
attention by an interobserver study in which consensus among 
all pathologists was achieved in only 2 (9.5%) of 21 difficult 
fibroepithelial lesions. This can be attributed to subjective histo-
pathological criteria such as stromal cellularity, stromal conden-
sation, atypia and well-developed leaf-like growths.99 104 Studies 
that sought to differentiate FAs from phyllodes tumours using 
protein immunohistochemistry and other methods have so far 
not been able to consistently assist in resolving this diagnostic 
dilemma.105–108 As such, further investigations are warranted to 
understand whether genomic features can be clinically useful. 
Finally, a recent study involving massively parallel sequencing 
analysis and formal clonality analysis of FAs and phyllodes 
tumours has shown that MED12 mutations are extremely 
common among them and that a clonal relationship likely exists 
between FAs and phyllodes tumours that share identical MED12 
mutations.109 Therefore, additional studies are also required to 
shed greater light on the progression of fibroepithelial lesions 
and whether FAs do constitute the substrate from which phyl-
lodes tumours develop. We are gradually arriving at a more 
comprehensive understanding of the molecular underpinnings 
driving the formation of fibroepithelial tumours.
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figure 3 Cellular fibroadenoma at low magnification (A) shows a typical appearance of a proliferation of both epithelial and stromal components. 
At medium (B) and high (C) magnifications, the increased stromal cellularity is observed. Cellular fibroadenomas may be difficult to distinguish from 
benign phyllodes tumours when there is a predominant intracanalicular growth pattern.
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