Disorders of carbohydrate digestion and absorption

B. Levin

NORMAL DIGESTION AND ABSORPTION
OF CARBOHYDRATES

The first stage of digestion and absorption of dietary carbohydrates is accomplished by the salivary and pancreatic α-amylases, mainly by the latter in the duodenum and jejunum, where the efficiency of its hydrolysis has been ascribed to the absorption of the enzyme onto the membrane on the surface of the microvilli where the reaction occurs, a phenomenon which has been called membrane or contact digestion (Ugolev, 1965).

The second stage involves the hydrolysis of disaccharides whether formed from polysaccharides (maltose) or ingested as sucrose and lactose which enter the small intestine largely unchanged. The disaccharidase activity of the intestinal juice is very small (Dahlvist and Borgström, 1961) and the evidence is now conclusive that the specific disaccharidases are located in, or closely associated with, the intestinal mucosal cells (Eichholz and Crane, 1966). Experiments on isolates of the microvilli of the mucosa have confirmed that these contain most if not all the disaccharidase activity (Miller and Crane, 1961), and that the latter is associated with the plasma membrane of the microvillus (Eichholz, 1967; Eichholz and Crane, 1965). Using hamster intestine Johnston (1967) has identified sucrase and maltase in particles or knobs, 60 Å in diameter, covering the luminal surface of the plasma membrane.

The third stage is that of transport of the monosaccharide across the mucosal cell. Crane (1968a) has summarized the experimental evidence supporting the hypothesis that this is by mobile carrier systems situated in the plasma membrane. Hydrolysis precedes absorption and is closely integrated with it (Crane, 1968b) as shown in Figure 1. Glucose and galactose have the same specific system, their absorption being 'active', i.e., against a concentration gradient, and probably dependent on the presence of sodium ions (Crane, 1968a). Glucose may also be transported by a pathway other than that shared with galactose (Newey, 1967). Fructose, however, is absorbed in direct proportion to its concentration (Holdsworth and Dawson, 1964), though the rapidity suggests that its diffusion is also facilitated by a 'carrier' (Crane, 1968b). Although the glucose 'carrier' has not been identified, the kinetics of the absorption process resemble those of an enzyme-substrate reaction (Crane, 1968b; Matthews, 1968).

The zone of hydrolysis has been depicted by Crane as external to the lipid diffusion barrier across which the monosaccharides are transported but others have suggested that the disaccharidases and the carbohydrate 'carrier' form one supramolecular complex (Semenza, Tosi, Valloton-Delahaux, and Mulhaupt, 1964), or that transport mechanisms as well as disaccharidases are randomly scattered over the whole surface of the microvilli (Hamilton and McMichael, 1968).

DISACCHARIDASES OF THE INTESTINAL MUCOSA

A number of disaccharidases, some with overlapping specificities, have been characterized by heat inactivation or gel separation in homogenates of intestinal mucosa (Dahlvist, 1962; Semenza, Auricchio, and Rubino, 1965). These include four or five maltases, all of which hydrolyse maltose; two of them also split starch and are therefore amylases, two also hydrolyse sucrose and are therefore sucrases, and one, isomaltase, also splits isomaltose and palatinose.1 There are also two

1This enzyme is sometimes called palatinase. ED.
TABLE I
CLASSIFICATION OF INTESTINAL DISACCHARIDASES

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate Hydrolysed</th>
<th>Proportion of Total Maltase Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltase Ia = isomaltase1</td>
<td>Isomaltose Maltose</td>
<td>$\frac{50}{75}$</td>
</tr>
<tr>
<td>Maltase Ib = sucrase</td>
<td>Sucrose Maltose</td>
<td>$\frac{25}{75}$</td>
</tr>
<tr>
<td>Maltase II</td>
<td>Maltose</td>
<td>$\frac{25}{75}$</td>
</tr>
<tr>
<td>Maltase III</td>
<td>Maltose</td>
<td>$\frac{25}{75}$</td>
</tr>
<tr>
<td>Trehalase</td>
<td>Trehalose</td>
<td>Nil</td>
</tr>
<tr>
<td>Lactase = cellobiase</td>
<td>Lactose Cellobiose</td>
<td>Nil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate Hydrolysed</th>
<th>Proportion of Total Maltase Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltase 5 = isomaltase1</td>
<td>Isomaltose Maltose</td>
<td>$\frac{75}{75}$</td>
</tr>
<tr>
<td>Maltase 4 = sucrase 2</td>
<td>Sucrose Maltose</td>
<td>$\frac{7}{75}$</td>
</tr>
<tr>
<td>Maltase 3 = sucrase 1</td>
<td>Sucrose Maltose</td>
<td>$\frac{7}{75}$</td>
</tr>
<tr>
<td>Maltase 2</td>
<td>Starch Maltose</td>
<td>$\frac{13}{75}$</td>
</tr>
<tr>
<td>Maltase 1</td>
<td>Starch Maltose</td>
<td>$\frac{5}{75}$</td>
</tr>
<tr>
<td>Trehalase</td>
<td>Trehalose</td>
<td>Nil</td>
</tr>
<tr>
<td>Lactase 1</td>
<td>Lactose</td>
<td>Nil</td>
</tr>
<tr>
<td>Lactase 2</td>
<td>Lactose, hetero-galactosidase</td>
<td>$\frac{5}{75}$</td>
</tr>
</tbody>
</table>

1 Isomaltase also hydrolyses palatinose. ED.

lactases, one specific for lactose, the other also splitting heterogalactosides (Table I).

The levels of enzyme activities of both duodenum and jejunum in 'control' adults, infants, and children (Burgess and Levin, unpublished observations) are shown in Table IIa, while Table IIb shows those of some other investigators for comparison. Our own results are from patients in whom a malabsorption syndrome was suspected but later excluded because the mucosa was normal histologically; they cannot therefore strictly be considered normal. There are wide differences between the mean levels of enzyme activities, both in children and adults, in the different series. The levels for duodenum are lower than those for jejunum. The range is wide for each enzyme, especially lactase, and therefore interpretation of an individual low result must be cautious except when it approaches zero.

DISORDERS OF DIGESTION AND ABSORPTION OF CARBOHYDRATES

Only those conditions affecting hydrolysis of disaccharides or transport of monosaccharides will be considered. They may be congenital or acquired. In the congenital variety, as in other inherited metabolic disorders, the abnormal disaccharidase arises from a gene mutation and results in a specific carbohydrate malabsorption. On the other hand acquired malabsorption of carbohydrate occurs when a reduction of the total absorbing surface area of the intestine causes a non-specific reduction of disaccharidase activity as seen in enteritis, coeliac disease, sprue, or injury to the small bowel.

CONGENITAL DISACCHARIDE MALABSORPTION The presenting sign in congenital disaccharide malabsorption is profuse watery diarrhoea which is sour smelling and acid, and occurs very soon after ingestion of the sugar involved. In lactose intolerance this occurs when milk feeds, breast or artificial, commence, and is severe enough to require intravenous therapy. With sucrose malabsorption it begins as soon as this sugar is introduced into the diet, but dehydration requiring resuscitation with intravenous fluids only occurs if sugar is given in the first few weeks of life. The symptoms are less severe the later cane sugar is introduced, the main manifestation then being failure to thrive and a diarrhoea which is mild or moderate, but persistent. An associated starch malabsorption may also be present, but it is usually mild and may not be obvious.

Examination of faeces The stool is acid with a pH less than 5. The disaccharide can be detected and identified by paper chromatography. In some instances the disaccharide may also be present in the urine.

Oral tolerance test After an overnight fast the blood glucose response to a dose of disaccharide,
26

B. Levin

TABLE IIa

| Levels of Disaccharidase Activity in Duodenal and Jejunal Mucosa of Children and Adults¹ |
|---------------------------------|-------|-------|-------|-------|
| | Maltase | Isomaltase | Palatinase | Sucrase |
| **Children** | | | | |
| Duodenum | Mean | Range | Mean | Range |
| Mean | 2.3 ± 0.5 (7) | 0.2 - 3.5 | 15.1 ± 2.4 (7) | 7.5 - 25.4 |
| Range | 4.9 - 0.4 (25) | 1.9 - 9.3 | 26.3 ± 1.8 (25) | 11.8 - 44.8 |
| **Jejunum** | Mean | Range | Mean | Range |
| Mean | 5.6 ± 0.7 (7) | 4.2 - 8.3 | 27.9 ± 2.9 (7) | 17.8 - 44.3 |
| Range | 61.8 ± 0.9 (7) | 11.8 - 44.8 | 39.9 ± 1.8 (7) | 22.3 - 44.3 |

¹Results are expressed as μmoles substrate split/g mucosa/min. and are given as mean and range or as mean ± the standard error of the mean.

TABLE IIb

| Other Reported Levels of Disaccharidase Activity in Duodenal and Jejunal Mucosa of Children and Adults¹ |
|---------------------------------|-------|-------|-------|-------|
| | Maltase | Isomaltase | Palatinase | Sucrase |
| **Children** | | | | |
| Duodenum | Mean | Range | Mean | Range |
| Mean | 2.7 (8) | 18.8 (8) | 5.7 (8) | 5.2 (8) |
| Range | 0.9 - 5.2 | 9.8 - 26.7 | 3.0 - 7.8 | 2.4 - 7.6 |
| Mean ± SE | 5.2 ± 0.5 (35) | 32.5 ± 1.9 (35) | 7.9 ± 0.7 (35) | 10.0 ± 0.7 (35) |
| **Jejunum** | Mean | Range | Mean | Range |
| Mean | 3.0 (17) | 5.1 - 37.6 | 5.4 - 14 | 9.8 ± 18 |
| Range | 1.9 - 10.8 | 17.9 - 24.5 | 2.0 - 3.0 | 7.5 - 9.2 |
| Mean ± SE | 3.5 ± 0.2 (17) | 22.3 ± 0.7 (17) | 7.2 ± 0.7 (17) | 1.8 ± 0.2 (17) |
| Range | 1.9 - 10.8 | 17.9 - 24.5 | 2.0 - 3.0 | 7.5 - 9.2 |

¹Results are expressed as μmoles substrate split/g mucosa/min. and are given as mean and range or as mean ± the standard error of the mean. The authors' results have been converted to μmoles/g mucosa/min. using their figure for nitrogen content of mucosa.

Radiological diagnosis

Radiography of the abdomen one hour after ingestion of a mixture of barium and the disaccharide shows characteristic changes with dilution of the contrast medium, dilatation of the small bowel, and rapid transit of its contents (Laws, Spencer, and Neale, 1967).

CONGENITAL LACTOSE MALABSORPTION

The recognition that malabsorption syndromes can arise from lack of a specific mucosal enzyme is only recent. An inherited lactase deficiency was first postulated by Durand (1958) to account for the chronic diarrhea of a 13-month-old girl and by Holzel, Schwarz, and Sutcliffe (1959) for lactose malabsorption and failure to thrive in two sibs.

The condition is rare, and although 18 cases have been recorded (Holzel, 1967) few are conclusively proven. A number were investigated only at some period after infancy, so that secondary or acquired lactose malabsorption could not be excluded. In most cases the diagnosis was based only on the characteristic symptoms and the results of oral
taste tests. Enzyme assays were performed in only two infants with diarrhoea from shortly after birth. Another infant under our observation developed watery diarrhoea on the third day of life while on breast feeding. Diarrhoea ceased on a low-lactose milk but recurred on cows’ milk. A lactose tolerance test at 3 weeks, and again at 2.5 years of age, showed no rise in blood glucose although glucose and sucrose absorption were normal (Fig. 2).

A jejunal biopsy at 14 months was normal histologically and showed almost complete absence of lactase with normal sucrase and palatinase but slightly low maltase activities (Table III). This is characteristic of a specific lactase deficiency. If diminished or absent lactase is accompanied by a reduction of all the other disaccharidases, the deficiency is acquired and not congenital. However, an acquired disaccharidase deficiency involving lactase only is not uncommon (see below).

Table III

<table>
<thead>
<tr>
<th>Condition</th>
<th>Biopsy</th>
<th>Lactase (Units)</th>
<th>Maltase (Units)</th>
<th>Palatinase (Units)</th>
<th>Sucrase (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital lactose malabsorption</td>
<td>Duodenum</td>
<td>0.07</td>
<td>5.3</td>
<td>1.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Glucose-galactose malabsorption</td>
<td>Jejunum</td>
<td>5.6</td>
<td>14.2</td>
<td>1.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Controls Mean</td>
<td>Jejunum</td>
<td>4.9</td>
<td>26.3</td>
<td>2.5</td>
<td>8.9</td>
</tr>
<tr>
<td>Range</td>
<td>1.9 – 9.3</td>
<td>11.8 – 48.4</td>
<td>1.3 – 5.1</td>
<td>4.9 – 19.8</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>Jejunum</td>
<td>2.3</td>
<td>15.1</td>
<td>1.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Range</td>
<td>0.2 – 3.5</td>
<td>7.5 – 25.4</td>
<td>0.4 – 2.2</td>
<td>2.2 – 8.7</td>
<td></td>
</tr>
</tbody>
</table>

DISACCHARIDASE LEVELS IN INTESTINAL MUCOSA

A congenital lactose malabsorption. Many reports have appeared since the first descriptions by Weijers, van de Kamer, Dickie, and Ijsseling (1961) and Prader, Auricchio, and Murset (1961) but the earlier ones were not supported by enzyme assay. In a congenital sucrase deficiency isomaltase and maltase are always also reduced. If other enzymes are reduced, then the deficiency is acquired. An acquired sucrase malabsorption confined to sucrose or to sucrose and starch seldom occurs.

Oral tolerance test There is no rise in blood glucose following ingestion of sucrose and palatinose whereas starch, maltose, and glucose provoke an increase of over 30 mg/100 ml, usually maximal in the first 30 minutes (Fig. 3). The diarrhoeal stools are typical—acid, sour smelling, and containing large amounts of the disaccharide; the latter is sometimes present in the urine also.

Enzyme assay Assay of the intestinal mucosa showed an almost complete absence of sucrase in all nine cases we have studied (Fig. 4). This was found in the older as well as the younger patients, and indicates that the improved clinical tolerance to sucrose...
with age is not due to recovery of enzyme activity but to the decreased daily intake of cane sugar in relation to body weight.

Palatinase deficiency was also present, and in some this was as severe as the sucrase reduction. Maltase activity also was considerably decreased, since both sucrase and isomaltase together account for 75 to 80\% of the total maltase activity (Dahlqvist, 1962). On the other hand, lactase activity was within normal limits.

The association of sucrase with isomaltase deficiency implies that two enzymes are simultaneously deficient, and if the two sucrases are distinct entities (Semenza et al., 1965) three enzymes must be affected. Mutation of a structural gene which controls the synthesis of a polypeptide common to the three enzymes (Burgess et al., 1964), or of a regulator gene controlling the synthesis of these enzymes, could be an explanation. However, there may be only one enzyme possessing different active centres (Launila, Perheentupa, Visakorpi, and Hallman, 1964). The widely varying ratios of the levels of palatinase to sucrase activities in patients with sucrase malabsorption suggest that this is a heterogeneous group.

Genetically the equal incidence in males and females, the occurrence of affected sibs, and the absence of affected parents point to an autosomal recessive inheritance. Kerry and Townley (1965) found significantly lower values for sucrase, isomaltase, and maltase in eight parents of affected children compared with normal controls, suggesting that they were heterozygotes.

Sucrose malabsorption first presenting in adult life is even more rare than in infancy. In four of the five recorded cases symptoms dated at least from early childhood. In one there was no apparent sucrase intolerance before adult life (Neale, Clark, and Levin, 1965) but a long period of breast feeding and the limited amount of cane sugar available in war time could explain the lack of symptoms. It is possible that all are of congenital origin.

ACQUIRED DISACCHARIDE MALABSORPTION Lactose malabsorption may be due either to isolated intestinal lactase deficiency or may be associated with disorders of the intestinal mucosa.

Secondary isolated lactase deficiency There have been many reports of lactose malabsorption in adults due to isolated intestinal lactase deficiency since the first descriptions (Dahlqvist, Hammond, Crane, Dunphy, and Littman, 1963; Haemmerli, Kistler, Ammann, Auricchio, and Prader, 1963). Of 100 asymptomatic adults, Newcomer, McGill, and Butt (1966) found 7\% with lactase deficiency, the other disaccharidases being normal. Neale (1968) found 6\% of 50 hospital subjects of north European stock to have lactose malabsorption although they had no symptoms of the condition, and 10 of 12 subjects from other countries were similarly deficient. A high proportion of some African tribes also show severe lactase deficiency (Cook and Kajubi, 1966).

Since there is usually no history of milk intolerance in infancy and childhood, these are apparently not cases of congenital lactase deficiency. The mucosa is normal histologically and there is usually no associated disease. The condition may, however, have resulted from an attack of gastroenteritis with recovery of all the disaccharidases except lactase. Alternatively some adults may have a genetic predisposition to a decreasing lactase activity, inherited as an autosomal recessive (Ferguson and Maxwell, 1967). It is unlikely to be due to cessation of milk feeding, as infants or adults who have not had milk for long periods have normal lactase activity (Dunphy, Littman, Hammond, Forster, Dahlqvist, and Crane, 1965).

Secondary disaccharidase deficiency Lactose malabsorption is frequently associated with disorders in which the intestinal mucosa is damaged and the activity of all the disaccharidases is reduced.

FIG. 4. Congenital sucrase malabsorption: disaccharidase levels in jejunal mucosa. Note almost complete absence of sucrase activity with very low palatinase and low maltase activities. Hatched area denotes controls' range and mean, arrows denote means of patients.
Disorders of carbohydrate digestion and absorption

29

TABLE IV

<table>
<thead>
<tr>
<th>Patient</th>
<th>Tissue</th>
<th>Lactase (Units)</th>
<th>Maltase (Units)</th>
<th>Palatinase (Units)</th>
<th>Sucrase (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.H.</td>
<td>Duodenum</td>
<td>1 0</td>
<td>12 0</td>
<td>—</td>
<td>3 5</td>
</tr>
<tr>
<td></td>
<td>Jejunum</td>
<td>0</td>
<td>3 1</td>
<td>—</td>
<td>0 3</td>
</tr>
<tr>
<td>K.F.</td>
<td>Jejunum</td>
<td>7 2</td>
<td>28 8</td>
<td>—</td>
<td>7 9</td>
</tr>
<tr>
<td></td>
<td>Duodenum</td>
<td>2 1</td>
<td>9 6</td>
<td>—</td>
<td>0 2</td>
</tr>
<tr>
<td></td>
<td>Jejunum</td>
<td>0 2</td>
<td>4 5</td>
<td>—</td>
<td>0 9</td>
</tr>
</tbody>
</table>

1Unit = μmoles substrate split/g mucosa/minute

In our series of children with coeliac disease confirmed by the clinical, biochemical, and histological findings, in whom an initial diagnostic jejunal biopsy was performed, all the enzymes were diminished, but lactase deficiency was the most marked (Fig. 5) (Levin, Burgess, Young, and Pringle, unpublished observations). A gluten-free diet resulted in return of activity; restoration of gluten for four weeks was sufficient to reduce it severely again (Table IV).

A temporary carbohydrate malabsorption in infants with infective diarrhoea may result from the mucosal damage due to the infection or from the resulting diarrhoea (Sunshine and Kretchmer, 1964; Burke, Kerry, and Anderson, 1965). In an attempt to assess each factor separately, we have examined the effect of helminth infection in the rat, which caused little or no diarrhoea, on disaccharidase levels of the jejunal mucosa (Liberman and Levin, 1968, to be published). Marked decreases were observed in all enzymes but more especially in lactase (Fig. 6).

Recovery of enzyme activities accompanied recovery from infection. In contrast an osmotic diarrhoea unaccompanied by infection resulted in a rise in the disaccharidase activities (Fig. 7). If applicable to man the results suggest that the carbohydrate malabsorption is due to the intestinal infection and not to the accompanying diarrhoea. This is consistent with the association of giardiasis in infants with carbohydrate malabsorption (Holzel, 1968). Furthermore kwashiorkor, which is caused by a
protein-deficient diet, is also associated with a reduction of intestinal disaccharidase activity (Stanfield, Hutt, and Tunnicliffe, 1965). We have shown, however, that in rats fed on a protein-deficient diet disaccharidase activities rise (Solimano, Burgess, and Levin, 1967), so it is probably the gastrointestinal infection usually present in human protein malnutrition which causes carbohydrate malabsorption.

![Graph showing lactase and sucrase activity](image)

FIG. 7. Effect of acute non-infective (osmotic) diarrhoea upon the jejunal enzymes of the rat. Note marked increase of sucrase and especially of lactase activities. Figures in columns = number of rats.

CONGENITAL MONOSACCHARIDE MALABSORPTION

Only one variety of congenital monosaccharide malabsorption has been established, that which affects both glucose and galactose.

Glucose-galactose malabsorption The discovery of this rare syndrome (Lindquist, Meeuwisse, and Melin, 1962; Laplane, Polonovski, Etienne, DeBray, Lods, and Pissarro, 1962) supports the hypothesis of a specific glucose-galactose transport mechanism. So far 14 cases have been reported, but only one from Great Britain (Abraham, Levin, Oberholzer, and Russell, 1967). Profuse diarrhoea develops as soon as breast or artificial feeding begins and is not relieved when sucrose, lactose, or glucose is excluded.

Oral tolerance tests show that the blood glucose fails to rise after ingestion of glucose or galactose, and that the sugar is excreted in the faeces. Similar results are obtained with lactose, maltose, or palatinose. However, fructose is normally absorbed (Fig. 8). D-xylose is less readily absorbed, its transport possibly involving the same carrier as glucose-galactose (Alvarado, 1966; Salomon, Allums, and Smith, 1961). Glucosuria is usually found, indicating a defective transport mechanism in the renal tubular epithelium also.

![Graph showing glucose-galactose malabsorption tests](image)

FIG. 8. Glucose-galactose malabsorption. Monosaccharide (a) and disaccharide (b) tolerance tests.

![Graph showing transport of radioactive compounds](image)

FIG. 9. Transport of 14C-glucose (Na^+-dependent) and 14C-leucine by intestinal cells in vitro. Note failure to concentrate glucose by patients' cells as compared with control cells. Concentration in cells expressed as ratio of radioactivity in tissue (Ci) to that in fluid medium (Cm).
Disorders of carbohydrate digestion and absorption

Transport defect Glucose (or galactose) fails to concentrate in mucosal cells when incubated in a medium containing 14C-glucose, whereas 14C-leucine is concentrated normally (Meeuwisse and Dahlqvist, 1966; Eggermont and Loeb, 1966). The results in our case, as determined by Dr E. Eggermont, are shown in Figure 9. The histology of the mucosa was normal as were the disaccharidases (Abraham et al, 1967) (Table III).

Inheritance is probably by an autosomal recessive gene because sibs may be affected, but not parents (Lindquist et al, 1962; Meeuwisse and Dahlqvist, 1966).

Treatment is by a strict exclusion of all carbohydrates except fructose, at least for the first year of life, if not longer; later some starch, etc, may be taken.

REFERENCES

Disorders of carbohydrate digestion and absorption: NORMAL DIGESTION AND ABSORPTION OF CARBOHYDRATES

B. Levin

J Clin Pathol 1969 s1-2: 24-31
doi: 10.1136/jcp.s1-2.1.24

Updated information and services can be found at:
http://jcp.bmj.com/content/s1-2/1/24.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/