Skip to main content
Log in

Calcium pyrophosphate dihydrate and basic calcium phosphate crystalinduced arthropathies: Update on pathogenesis, clinical features, and Therapy

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Calcium-containing crystals are the most common class for the osteoarthritic joint. They are responsible for acute periarthritis and destructive arthropathies, and for tissue deposits mimicking tumor-like masses. These crystals encompassed mainly calcium pyrophosphate dihydrate and basic calcium phosphate crystals, with the latter being related to hydroxyapatite, carbonate-substituted apatite, and octacalcium phosphate. Calcification deposit mechanisms will be reviewed with respect to extracellular inorganic pyrophosphate dysregulation mainly caused by modulation of specific membrane channel disorders. Genetic defects have been extensively studied and identified mutation of specific genes such as ANKH and COL. Pathogenesis of crystal-induced inflammation is related to synovial tissue and direct cartilage activation. Besides classical knee or wrist pseudogout attacks or Milwaukee shoulder arthropathies, clinicians should be aware of other specific common presentations, such as erosive calcifications, spinal cord compression by intraspinal masses, ligamentum flavum calcification, or atypical calcified tophus. Promising clinical results for preventing calcium crystal deposits and cartilage degradation are lacking. Practical imaging tools are needed to monitor reduction of calcification of fibrocartilage and articular cartilage as markers of drug efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Rerences and Recommended Reading

  1. Ryan LM, Cheung HS: The role of crystals in osteoarthritis. Rheum Dis Clin North Am 1999, 25:257–267. A comprehensive review on the pathophysiologic mechanisms leading to crystal-induced arthropathies and related OA.

    Article  PubMed  CAS  Google Scholar 

  2. Pay S, Terkeltaub RA: Calcium pyrophosphate dihydrate and hydroxyapatite crystal deposition in the joint: new developments relevant to the clinician. Curr Rheumatol Rep 2003, 5:235–243.

    Article  PubMed  Google Scholar 

  3. Terkeltaub RA: What does cartilage calcification tell us about osteoarthritis. J Rheumatol 2002, 29:411–415.

    PubMed  Google Scholar 

  4. Terkeltaub RA: Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 2001, 281:C1-C11.

    PubMed  CAS  Google Scholar 

  5. Ryan LM, Rosenthal AK: Metabolism of extracellular pyrophosphate. Curr Opin Rheumatol 2003, 15:311–314.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson K, Hashimoto S, Lotz M, et al.: Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum 2001, 44:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  7. Ho AM, Johnson MD, Kingsley DM: Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000, 289:265–270. Description of a new animal model of apatite crystal deposition disease.

    Article  PubMed  CAS  Google Scholar 

  8. Okawa A, Nakamura I, Goto S, et al.: Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 1998, 19:271–273.

    Article  PubMed  CAS  Google Scholar 

  9. Hessle L, Johnson KA, Anderson HC, et al.: Tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Proc Natl Acad Sci U S A 2002, 99:9445–9449.

    Article  PubMed  CAS  Google Scholar 

  10. Nurnberg P, Thiele H, Chandler D, et al.: Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankilosis gene, result in craniometaphyseal dysplasia. Nat Genet 2001, 28:37–41.

    Article  PubMed  CAS  Google Scholar 

  11. Reichenberger E, Tiziani V, Watanabe S, et al.: Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet 2001, 68:1321–1326.

    Article  PubMed  CAS  Google Scholar 

  12. Rutsch F, Schaurte P, Kalhoff H, et al.: Low levels of urinary inorganic pyrophosphate indicating systemic pyrophosphate deficiency in a boy with idiopathic infantile arterial calcification. Acta Paediatr 2000, 89:1265–1269.

    Article  PubMed  CAS  Google Scholar 

  13. Rutsch F, Vaingankar S, Johnson K, et al.: PC-1 nuclesoide triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol 2001, 158:543–554.

    PubMed  CAS  Google Scholar 

  14. Rutsch F, Ruf N, Vaingankar S, et al.: Mutations in ENPP1 are associated infantile arterial calcification. Nat Genet 2003, 34:379–381. Idiopathic infantile arterial calcification is characterized by calcification of the internal elastic lamina of muscular arteries and stenosis caused by myointimal proliferation. The authors analyzed affected individuals from 11 unrelated kindreds and found that idiopathic infantile arterial calcification was associated with mutations that inactivated ectonucleotide pyrophosphatase/phosphodiesterase-1.

    Article  PubMed  CAS  Google Scholar 

  15. Pendleton A, Johnson MD, Hughes A, et al.: Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 2002, 71:933–940.

    Article  PubMed  Google Scholar 

  16. Williams JC, Zhang Y, Timms A, et al.: Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet 2002, 71:985–991.

    Article  PubMed  Google Scholar 

  17. Johnson K, Hessle L, Vaingankar S, et al.: Osteoblast tissuenonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol 2000, 279:P1365-P1377.

    Google Scholar 

  18. Rosenthal AK, Cheung HS, Ryan LM, et al.: Transforming growth factor B1 stimulates inorganic pyrophosphate elaboration by porcine cartilage. Arthritis Rheum 1991, 34:901–911.

    Article  Google Scholar 

  19. Rosen F, McCabe G, Quach J, et al.: Differential effects of aging on human chondrocytes responses to transforming growth factor beta: increased pyrophosphate production and decreases cell proliferation. Arthritis Rheum 1997, 40:1275–1281.

    PubMed  CAS  Google Scholar 

  20. Johnson K, Hashimoto S, Lotz M, et al.: IL-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am J Pathol 2001, 159:149–163.

    PubMed  CAS  Google Scholar 

  21. Hirose J, Ryan LM, Masuda I: Upregulated expression of cartilage intermediate-layer protein and ANK in articular hyalin cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 2002, 46:3218–3229.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson K, Vaingankar S, Chen Y, et al.: Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum 1999, 42:1986–1997.

    Article  PubMed  CAS  Google Scholar 

  23. Sohn P, Crowley E, Slattery E, et al.: Developmental and TGF-Bmediated regulation of ank mRNA expression in cartilage and bone. Osteoarthritis Cartilage 2002, 10:482–490.

    Article  PubMed  CAS  Google Scholar 

  24. Rosenthal AK, Masuda I, Gohr CM, et al.: The transglutaminase factor XIIIA is present in articular cartilage. Osteoarthritis Cartilage 2001, 9:578–581.

    Article  PubMed  CAS  Google Scholar 

  25. Williams CJ, Pendleton A, Bonavita G, et al.: Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 2003, 48:2627–2631.

    Article  PubMed  CAS  Google Scholar 

  26. Béjia I, Rtibi I, Touzi M, et al.: Familial calcium pyrophosphate dihydrate deposition disease: a Tunisian kindred. Joint Bone Spine 2004, in press.

  27. Hamza M, Meddeb N, Bardin T, et al.: [Hereditary chondrocalcinosis in Tunisia: a propos of 3 families.] Rev Rhum Mal Osteoartic 1991, 58:441–447.

    PubMed  CAS  Google Scholar 

  28. Derfus BA, Kurian JB, Butler JJ, et al.: The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol 2002, 29:570–574.

    PubMed  Google Scholar 

  29. Nalbant S, Martinez JAM, Kitumnuaypong T, et al.: Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 2003, 11:50–54.

    Article  PubMed  CAS  Google Scholar 

  30. Scharnweber D, Born R, Flade K, et al.: Mineralization behavior of collagen type I immobilized on different substrates. Biomaterials 2004, 25:2371–2380.

    Article  PubMed  CAS  Google Scholar 

  31. Cheung HS: Calcium crystals effects on the cells of the joint: implications for pathogenesis of disease. Curr Opin Rheumatol 2000, 12:223–227.

    Article  PubMed  CAS  Google Scholar 

  32. Cheung HS, Halverson PB, McCarty DJ: Phagocytosis of hydroxyapatite or calcium pyrophosphate dihydrate crystals by rabbit articular chondrocytes stimulates release of collagenase, neutral protease, and prostaglandins E2 and F2 alpha. Pro Soc Exp Biol Med 1983, 173:181–189.

    CAS  Google Scholar 

  33. McCarty GM, Westfall PR, Masuda I, et al.: Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloprotease-13 (collagenase-3) in adult porcine articular chondrocytes. Ann Rheum Dis 2001, 60:399–406.

    Article  Google Scholar 

  34. Liu R, Lioté F, Rose DM, et al.: Proline-rich tyrosine kinase 2 and Src kinase signaling transduce monosodium urate crystal-induced nitric oxide production and matrix metalloproteinase 3 expression in chondrocytes. Arthritis Rheum 2004, 50:247–258.

    Article  PubMed  CAS  Google Scholar 

  35. Halverson PB, Greene A, Cheung HS: Intracellular calcium response to the basic calcium phosphate crystals in fibroblasts. Osteoarthritis Cartilage 1998, 6:324–329.

    Article  PubMed  CAS  Google Scholar 

  36. Cheung HS, McCarty DJ: Mitogenesis induced by calcium containing crystals: role of intracellular dissolution. Exp Cell Res 1985, 157:63–70.

    Article  PubMed  CAS  Google Scholar 

  37. Borkowf A, Cheung HS, McCarty DJ: Endocytosis is required for the mitogenic effect of basic calcium phosphate crystals. Calcif Tissue Int 1987, 40:173–176.

    Article  PubMed  CAS  Google Scholar 

  38. McCarty GM, Cheung HS, Abel SM, et al.: Basic calcium phosphate crystal-induced collagenase production: role of intracellular dissolution. Osteoarthritis Cartilage 1998, 6:205–213.

    Article  Google Scholar 

  39. Sun Y, Zeng X-R, Wenger L, Cheung HS: Basic calcium phosphate crystals stimulate the endocytic activity of cells-inhibition by anticalcification agents. Biochem Bioph Res Com 2003, 312:1053–1059.

    Article  CAS  Google Scholar 

  40. Cheung HS: Phosphocitrate as a potent therapeutic strategy for crystal deposition disease. Curr Rheumatol Rep 2001, 3:24–28.

    PubMed  CAS  Google Scholar 

  41. Sun Y, Wenger L, Brinckerhoff CE, et al.: Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/ mitogen-activated protein kinase/c-Fos/AP-1/metalloprotenase 1 pathway: involvement of transcription factor binding sites AP-1 and PEA-3. J Biol Chem 2002, 277:1544–1552.

    Article  PubMed  CAS  Google Scholar 

  42. Nair D, Misra RP, Sallis JD, et al.: Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction. J Biol Chem 1997, 272:18920–18925.

    Article  PubMed  CAS  Google Scholar 

  43. Prudhommeaux F, Schiltz C, Lioté F, et al.: Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum 1996, 39:1319–1326.

    Article  PubMed  CAS  Google Scholar 

  44. Terkeltaub RA, Santoro DA, Mandel G, et al.: Serum and plasma inhibit neutrophil stimulation by hydroxyapatite crystals: evidence that serum alpha 2-HS glycoprotein is a potent and specific crystal-bound inhibitor. Arthritis Rheum 1988, 31:1081–1089.

    Article  PubMed  CAS  Google Scholar 

  45. Ortiz-Bravo E, Sieck MS, Schumacher HR: Changes in the protein coating monosodium urate crystals during active and subsiding inflammation: immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum 1993, 36:1274–1285.

    Article  PubMed  CAS  Google Scholar 

  46. Prudhommeaux F, Meunier A, Rey C, et al.: Inflammatory potential of in vivo aged basic calcium phosphate crystals. Bioceramics 1998, 11:387–390.

    Google Scholar 

  47. Laquerriere P, Grandjean-Laquerriere A, Jallot E, et al.: Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials 2003, 24:2739–2747.

    Article  PubMed  CAS  Google Scholar 

  48. Laquerriere P, Grandjean-Laquerriere A, Addadi-Rebbah S, et al.: MMP-2, MMP-9 and their inhibitors TIMP-2 and TIMP-1 production by human monocytes in vitro in the presence of different forms of hydroxyapatite particles. Biomaterials 2004, 25:2515–2524.

    Article  PubMed  CAS  Google Scholar 

  49. Claudepierre P, Rahmouni A, Bergamasco P, et al.: Misleading clinical aspects of hydroxyapatite deposits: a series of 15 cases. J Rheumatol 1997, 24:531–535.

    PubMed  CAS  Google Scholar 

  50. Lemaire V, Mammou D, Ritz-Bouillon S, et al.: Migration intraosseuse de calcifications du supra-épineux: α propos de deux cas [abstract]. Rev Rhum 2003, 70:903.

    Google Scholar 

  51. Lequesne M, Fallut M, Coulomb R, et al.: L’arthropathie destructrice rapide de l’épaule. Rev Rhum 1982, 49:427–437.

    PubMed  CAS  Google Scholar 

  52. Pons-Estel BA, Gimenez C, Sacnun M, et al.: Familial osteoarthritis and Milwaukee shoulder associated with calcium pyrophosphate and apatite crystal deposition. J Rheumatol 2000, 27:471–480.

    PubMed  CAS  Google Scholar 

  53. Fritz P, Bardin T, Laredo J-D, et al.: Paradiaphyseal calcific tenditnitis with cortical erosion. Arthritis Rheum 1994, 37:718–723.

    Article  PubMed  CAS  Google Scholar 

  54. Hamada JI, Ono W, Tamai K, et al.: Analysis of calcium deposits in calcific periarthritis. J Rheumatol 2001, 28:809–813.

    PubMed  CAS  Google Scholar 

  55. Guggi V, Calame L, Gerster J-C: Contribution of digit joint aspiration to the diagnosis of rheumatic diseases. Joint Bone Spine 2002, 69:58–61.

    Article  PubMed  Google Scholar 

  56. Halverson PB, McCarty DJ: Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate crystal deposition in the knee. Ann Rheum Dis 1986, 45:603–605.

    Article  PubMed  CAS  Google Scholar 

  57. Johnson K, Pritzker K, Goding J, et al.: The nucleoside triphosphate pyrophosphohydrolase (NTPPPH) isoenzyme PC-1 directly promote cartilage calcification through chondrocyte apoptosis and increased calcium precipitation by mineralizing vesicles. J Rheumatol 2001, 28:2681–2691.

    PubMed  CAS  Google Scholar 

  58. Hashimoto S, Ochs RL, Rosen F, et al.: Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A 1998, 95:3094–3099.

    Article  PubMed  CAS  Google Scholar 

  59. Ebenbischler GR, Erdogmus CB, Resch KL, et al.: Ultrasound therapy for calcific tendinitis of the shoulder. N Engl J Med 1999, 340:1533–1538.

    Article  Google Scholar 

  60. Muthukumar N, Karuppaswamy U: Tumoral calcium pyrophosphate dihydrate deposition disease of the ligamentum flavum. Neurosurgery 2003, 53:103–108. A review of tumoral CPPD deposits at the spine, with specific reveiw of imaging and therapeutic issues.

    Article  PubMed  Google Scholar 

  61. Cabre P, Pascal-Mousselard H, Kaidomar S, et al.: Six cases of cervical ligamentum flavum in Blacks in the French West Indies. Joint Bone Spine 2001, 68:158–165.

    Article  PubMed  CAS  Google Scholar 

  62. Kawano N, Yoshida S, Ohwada T, et al.: Cervical radiculomyelopathy caused by deposition of calcium pyrophosphate dihydrate crystals in the ligamenta flava: case report. J Neurosurg 1980, 52:279–283.

    Article  PubMed  CAS  Google Scholar 

  63. Foldes K: Knee chondrocalcinosis: an ultrasonographic study of the hyalin cartilage. Clin Imaging 2002, 26:194–196.

    Article  PubMed  Google Scholar 

  64. Sofka CM, Adler RS, Cordasco FA: Ultrasound diagnosis of chondrocalcinosis in the knee. Skeletal Radiol 2002, 31:43–45.

    Article  PubMed  Google Scholar 

  65. Liu-Bryan R, Lioté F: Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals and cellular signaling [manuscript submitted for publication]. Joint Bone Spine 2004, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ea, HK., Lioté, F. Calcium pyrophosphate dihydrate and basic calcium phosphate crystalinduced arthropathies: Update on pathogenesis, clinical features, and Therapy. Curr Rheumatol Rep 6, 221–227 (2004). https://doi.org/10.1007/s11926-004-0072-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-004-0072-6

Keywords

Navigation