Skip to main content

Advertisement

Log in

Molecular pathology of adrenal cortical tumors: Separating adenomas from carcinomas

  • EPS Proceedings
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Adrenal cortical carcinoma is a rare but interesting endocrine tumor. Its diagnosis is usually straightforward using morphologic assessment and supplemental immunohistochemistry. However, diagnostically challenging cases exist and pathologic evaluation would benefit from the availability of adjunctive molecular testing. Here, the relevant molecular pathology of adrenal cortical tumors is reviewed with special reference to those methods (e.g., DNA microarrays) that hold promise for improved diagnosis and prognosis, and prediction of therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bovio S, Cataldi A, Reimondo G, et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Invest 29:298–302, 2006.

    PubMed  CAS  Google Scholar 

  2. Vierhapper H. Adrenocortical tumors: clinical symptoms and biochemical diagnosis. Eur J Radiol 41:88–94, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Stratakis CA. Genetics of adrenocortical tumors: gatekeepers, landscapers and conductors in symphony. Trends Endocrinol Metab 14:404–410, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Kirschner LS. Emerging treatment strategies for adrenocortical carcinoma: a new hope. J Clin Endocrinol Metab 91:14–21, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Schteingart DE, Doherty GM, Gauger PG, et al. Management of patients with adrenal cancer: recommendations of an international consensus conference. Endocr Relat Cancer 12:667–680, 2005.

    Article  PubMed  CAS  Google Scholar 

  6. McNicol AM, Struthers AL, Nolan CE, et al. Proliferation in adrenocortical tumors: correlation with clinical outcome and p53 status. Endocr Pathol 8:29–36, 1997.

    PubMed  Google Scholar 

  7. Nakazumi H, Sasano H, Iino, K, Ohashi Y, Orikasa S. Expression of cell cycle inhibitor p27 and Ki-67 in human adrenocortical neoplasms. Mod Pathol 11:1165–1170, 1998.

    PubMed  CAS  Google Scholar 

  8. Terzolo M, Boccuzzi A, Bovio S, et al. Immunohistochemical assessment of Ki-67 in the differential diagnosis of adrenocortical tumors. Urology 57:176–182, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Iino K, Sasano H, Yabuki N, et al. DNA topoisomerase II alpha and Ki-67 in human adrenocortical neoplasms: a possible marker of differentiation between adenomas and carcinomas. Mod Pathol 10:901–907, 1997.

    PubMed  CAS  Google Scholar 

  10. Giordano TJ, Thomas DG, Kuick R, et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162:521–531, 2003.

    PubMed  CAS  Google Scholar 

  11. Erickson LA, Jin L, Sebo TJ, et al. Pathologic features and expression of insulin-like growth factor-2 in adrenocortical neoplasms. Endocr Pathol 12:429–435, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Dohna M, Reincke M, Mincheva A, et al. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes. Cancer 28:145–152, 2000.

    CAS  Google Scholar 

  13. Kjellman M, Kallioniemi OP, Karhu R, et al. Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 56:4219–4223, 1996.

    PubMed  CAS  Google Scholar 

  14. Sidhu S, Marsh DJ, Theodosopoulos G, et al. Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87:3467–3474, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao J, Roth J, Bode-Lesniewska B, et al. Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors. Genes chromosomescancer 34:48–57, 2002.

    Article  CAS  Google Scholar 

  16. Boulle N, Logie A, Gicquel C, et al. Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83:1713–1720, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Fottner C, Hoeflich A, Wolf E, et al. Role of the insulin-like growth factor system in adrenocortical growth control and carcinogenesis. Horm Metab Res 36:397–405, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Gao ZH, Suppola S, Liu J, et al. Association of H19 promoter methylation with the expression of H19 and IGF II genes in adrenocortical tumors. J Clin Endocrinol Metab 87:1170–1176, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Gicquel C, Bertagna X, Gaston V, et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61:6762–6767, 2001.

    PubMed  CAS  Google Scholar 

  20. Gicquel C, Bertagna X, Schneid H, et al. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors. J Clin Endocrinol Metab 78:1444–1453, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Gicquel C, Raffin-Sanson MI, Gaston V, et al. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab 82:2559–2565, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Ilvesmaki V, Kahri AI, Miettinen PJ, et al. Insulin-like growth factors (IGFs) and their receptors in adrenal tumors: high IGF-II expression in functional adrenocortical carcinomas. J Clin Endocrinol Metab 77:852–858, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Kahri AI, Heikkila P, et al. H19 and insulin-like growth factor-II gene expression in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 80:492–496, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Liu J, Kahri AI, Heikkila P, et al. Ribonucleic acid expression of the clustered imprinted genes, p57KIP2, insulin-like growth factor II, and H19, in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 82:1766–1771, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Logie A, Boulle N, Gaston V, et al. autocrine role of IGF-II in proliferation of human adrenocortical carcinoma NCI H295R cell line. J Mol Endocrinol 23:23–32, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Weber MM, Fottner C, Wolf E. The role of the insulin-like growth factor system in adrenocortical tumourigenesis. Eur J Clin Invest 30(Suppl 3):69–75, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Sameshima Y, Tsunematsu Y, Watanabe S, et al. Detection of novel germ-line p53 mutations in diverse-cancer-prone families identified by selecting patients with childhood adrenocortical carcinoma. J Natl Cancer Inst 84: 703–707, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Barzon L, Chilosi M, Fallo F, et al. Molecular analysis of CDKN1C and TP53 in sporadic adrenal tumors. Eur J Endocrinol 145: 207–212, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi H, Usui T, Fukata J, et al. Mutation analysis of Gsalpha, adrenocorticotropin receptor and p53 genes in Japanese patients with adrenocortical neoplasms: including a case of Gsalpha mutation. Endocr J 47:461–466, 2000.

    PubMed  CAS  Google Scholar 

  30. Latronico AC, Pinto EM, Domenice S, et al. An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 86:4970–4973, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Lin SR, Lee YJ, Tsai JH. Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab 78:483–491, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Ohgaki H, Kleihues P, Heitz PU. p53 mutations in sporadic adrenocortical tumors. Int J Cancer 54:408–410 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Olivier M, Goldgar DE, Sodha N, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63:6643–6650, 2003.

    PubMed  CAS  Google Scholar 

  34. Pinto EM, Billerbeck AE, Fragoso MC, et al. Deletion mapping of chromosome 17 in benign and malignant adrenocortical tumors associated with the Arg337His mutation of the p53 tumor suppressor protein. J Clin Endocrinol Metab 90:2976–2981, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Pinto EM, Billerbeck AE, Villares MC, et al. Founder effect for the highly prevalent R337H mutation of tumor suppressor p53 in Brazilian patients with adrenocortical tumors. Arq Bras Endocrinol Metabol 48:647–650, 2004.

    PubMed  Google Scholar 

  36. Reincke M, Karl M, Travis WH, et al. p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78:790–794, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Reincke M, Wachenfeld C, Mora P, et al. p53 mutations in adrenal tumors: Caucasian patients do not show the exon 4 “hot spot” found in Taiwan. J Clin Endocrinol Metab 81:3636–3638, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Sandrini F, Villani DP, Tucci S, et al. Inheritance of R337H p53 gene mutation in children with sporadic adrenocortical tumor. Horm Metab Res 37:231–235, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Sidhu S, Martin E, Gicquel C, et al. Mutation and methylation analysis of TP53 in adrenal carcinogenesis. Eur J Surg Oncol 31:549–554, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Varley JM, McGown G, Thorncrolt M, et al. Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 65:995–1006, 1999.

    Article  PubMed  CAS  Google Scholar 

  41. Wagner J, Portwine C, Rabin K, et al. High frequency of germline p53 mutations in childhood adrenocortical cancer. J Natl Cancer Inst 86:1707–1710, 1994.

    Article  PubMed  CAS  Google Scholar 

  42. Libe R, Bertherat J. Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 153:477–487, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. Heppner C, Reincke M, Agarwal SK, et al. MEN1 gene analysis in sporadic adrenocortical neoplasms. J Clin Endocrinol Metab 84:216–219, 1999.

    Article  PubMed  CAS  Google Scholar 

  44. Schulte KM, Heinze M, Mengel M, et al. MEN 1 gene mutations in sporadic adrenal adenomas. Hum Genet 105:603–610, 1999.

    Article  PubMed  CAS  Google Scholar 

  45. Schulte KM, Mengel M, Heinze M, et al. Complete sequencing and messenger ribonucleic acid expression analysis of the MEN I gene in adrenal cancer. J Clin Endocrinol Metab 85:441–448, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Bertherat J, Groussin L, Sandrini F, et al. Molecular and functional analysis of PRKARIA and its locus (17q22–24) in sporadic adrenocortical tumors: 17qlosses, somatic mutations, and protein kinase A expression and activity. Cancer Res 63:5308–5319, 2003.

    PubMed  CAS  Google Scholar 

  47. Bossis I, Vourtetakis A, Bei T, et al. Protein kinase A and its role in human neoplasia: the Carney complex paradigm. Endocr Relat Cancer 11:265–280, 2004.

    Article  PubMed  CAS  Google Scholar 

  48. Groussin L, Jullian E, Perlemoine K, et al. Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 87:4324–4329, 2002.

    Article  PubMed  CAS  Google Scholar 

  49. Libe R, Mantovani G, Bondioni S, et al. Mutational analysis of PRKAR1A and Gs(alpha) in sporadic adrenocortical tumors. Exp Clin Endocrinol Diabetes 113:248–251, 2005.

    Article  PubMed  CAS  Google Scholar 

  50. Tissier F, Cavard C, Groussin L, et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65:7622–7627, 2005.

    PubMed  CAS  Google Scholar 

  51. Ciampi R, Nikiforov YE. Alterations of the BRAF gene in thyroid tumors. Endocr Pathol 16:163–172, 2005.

    Article  PubMed  CAS  Google Scholar 

  52. Ciampi R, Zhu Z, Nikiforov YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 16:99–105, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115:94–101, 2005.

    Article  PubMed  CAS  Google Scholar 

  54. Lakhani SR, Ashworth A. Microarray and histopathological analysis of tumours: the future and the past? Nat Rev Cancer 1:151–157, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5:782–792, 2004.

    Article  PubMed  CAS  Google Scholar 

  56. Snijders AM, Meijer GA, Brakenhoff RH, et al. Microarray techniques in pathology: tool or toy? Mol Pathol 53:289–294, 2000.

    Article  PubMed  CAS  Google Scholar 

  57. Alizadeh AA, Ross DT, Perou CM, et al. Towards a novel classification of human malignancies based on gene expression patterns. J Pathol 195:41–52, 2001.

    Article  PubMed  CAS  Google Scholar 

  58. Giordano TJ, Gene expression profiling of endocrine tumors using DNA microarrays: progress and promise. Endocr Pathol 14:107–116, 2003.

    Article  PubMed  CAS  Google Scholar 

  59. de Fraipont F, El Atifi M, Cherradi N, et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90:1819–1829, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Giordano Md, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordano, T.J. Molecular pathology of adrenal cortical tumors: Separating adenomas from carcinomas. Endocr Pathol 17, 355–364 (2006). https://doi.org/10.1007/s12022-006-0007-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-006-0007-z

Key Words

Navigation