Skip to main content
Log in

Possible contribution of aminopeptidase N (APN/CD13) to invasive potential enhanced by interleukin-6 and soluble interleukin-6 receptor in human osteosarcoma cell lines

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

This study aimed at clarifying the role of Aminopeptidase N (APN), a Zn2+-dependent ectopeptidase localized on the cell surface of human osteosarcoma cell lines treated with proinflammatory cytokines. We investigated the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α) as well as the anti-inflammatory cytokine transforming growth factor beta (TGF-β) for their influence on APN regulation. Soluble IL-6 receptor (sIL-6R) was always used together with IL-6 to achieve a stable effect. In addition, the invasive potential of the osteosarcoma cell lines MG63 and HOS was examined. Competitive RT-PCR and Ala-pNA activity assays revealed that IL-6 and sIL-6R significantly increased the mRNA expression and activity of APN in both osteosarcoma cell lines. Although IL-1β significantly stimulated APN mRNA expression in both cell lines, it influenced the enzyme activity only in MG63. TNF-α and TGF-β, however, had an effect neither on mRNA expression nor on the enzyme activity of APN in both cell lines. In the Matrigel invasion assay, IL-6 and sIL-6R significantly up-regulated the transmigration of these cell lines, whereas other cytokines did not. The up-regulated invasion was inhibited by bestatin, a specific inhibitor of APN. Cellular migration correlated highly with APN activity (r = 0.79, P < 0.002). These findings suggest that APN contributes to the invasive potential of human osteosarcomas enhanced by IL-6 and SIL-6R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dahlin DC, Unni KK. Osteosarcoma. In Dahlin DC, Unni KK (eds): Bone Tumors. General Aspects and Data on 8542 Cases. Springfields, Illinois: C. C. Thomas Publisher, Springfields, 1986: 269–307.

    Google Scholar 

  2. Sanderink GJ, Artur Y, Siest G. Human aminopeptidases: a review of the literature. J Clin Chem Clin Biochem 1988; 26: 795–807.

    PubMed  CAS  Google Scholar 

  3. Look, AT, Ashmun RA, Shapiro LH, Peiper SC. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J Clin Invest 1989; 83: 1299–307.

    Article  PubMed  CAS  Google Scholar 

  4. Solhonne B, Gros C, Pollard H, Schwarz JC. Major localization of aminopeptidase M in rat brain. Neuroscience 1987;22: 225–32.

    Article  PubMed  CAS  Google Scholar 

  5. Turner AJ, Hooper NM, Kenny AJ. Metabolism of neutropeptides. In Turner AJ, Kenny AJ (eds): Mammalian Ectoenzymes. Amsterdam: Elesevier Scientific Publishing, 1984: 211–42.

    Google Scholar 

  6. Ward PE, Benter IF, Dick L, Wilk S. Metabolism of vasoactive peptides by plasma and purified renal aminopeptidase M. Biochem Pharmacol 1990; 40: 1725–32.

    Article  PubMed  CAS  Google Scholar 

  7. Falk K, Rotzschke O, Stevanovic S, Jung G. Pool sequencing of natural HLA-DR,-DQ, and-DP ligands revearls detailed peptide motifs, constraints of processing, and general rules. Immnogenetics 1994; 39: 230–42.

    CAS  Google Scholar 

  8. Koch AE, Burrows JC, Skoutelis A et al. Monoclonal antibodies detect monocyte/macrophage activation and differentiation antigens and identify functionally distinct subpopulations of human rheumatoid synovial tissue macrophages. Am J Pathol 1991; 138: 165–73.

    PubMed  CAS  Google Scholar 

  9. Amoscato AA, Alexander JW, Babcock GF. Surface aminopeptidase activity of human lymphocytes. I. Biochemical and biologic properties of intact cells. J Immunol 1989; 142: 1245–52.

    PubMed  CAS  Google Scholar 

  10. Saiki I, Fujii H, Yoneda J et al. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int J Cancer 1993; 54: 137–43.

    PubMed  CAS  Google Scholar 

  11. Menrad A, Speicher D, Wacker J, Herlym M. Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells. Cancer Res 1993; 53: 1450–5.

    PubMed  CAS  Google Scholar 

  12. Fujii H, Nakajima M, Saiki I et al. T. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin Exp Metastasis 1995; 13: 337–44.

    Article  PubMed  CAS  Google Scholar 

  13. Nadziejko C, Finkelstein I, Balmes JR. Contribution of secretory leukocyte proteinase inhibitor to the antiprotease defense system of the peripheral lung: effect of ozone-induced acute inflammation. Am J Respir Crit Care Med 1995; 152: 1592–98.

    PubMed  CAS  Google Scholar 

  14. Zetterstrom M, Sundgren-Andersson AK, Ostlund P, Bartfai T. Delineation of the proinflammatory cytokine cascade in fever induction. Ann NY Acad Sci 1998; 29: 48–52.

    Article  Google Scholar 

  15. Kusano K, Miyaura C, Inada M et al. Regulation of matrix metalloproteinases (MMP-2.-3,-9, and-13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 1998; 139: 1338–45.

    Article  PubMed  CAS  Google Scholar 

  16. Aisa MC, Rahman S, Senin U et al. Cathepsin B activity in normal human osteoblast-like cells and human osteoblastic osteosarcoma cells (MG-63): Regulation by interleukin-1 beta and parathyroid hormone. Biochim Biophys Acta 1996; 1290: 29–36.

    PubMed  Google Scholar 

  17. Fujita F, Tsujinaka T, Yano M et al. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer 1996; 68: 637–43.

    Article  PubMed  CAS  Google Scholar 

  18. Ritchie CK, Andrews LR, Thomas KG et al. The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis: Implications for the development of metastatic disease. Endocrinology 1997; 138: 1145–50.

    Article  PubMed  CAS  Google Scholar 

  19. Bellido T, O'Brien CA, Roberson PK, Manolagas SC. Transcriptional activation of the p21 (WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and antiapoptotic effects on human osteoblastic cells. J Biol Chem 1998; 14: 21137–44.

    Article  Google Scholar 

  20. Nishimura R, Moriyama K, Yasukawa K et al. Combination of interleukin-6 and soluble interleukin-6 receptors induces differentiation and activation of JAK-STAT andMAP kinase pathways in MG-63 human osteoblastic cells. J Bone Mineral Res 1998; 13: 777–85.

    Article  CAS  Google Scholar 

  21. Franchimont N, Gangji V, Durant D, Canalis E. Interleukin-6 with its soluble receptor enhances the expression of insulin-like growth factor-I in osteoblasts. Endocrinology 1997; 138: 5248–55.

    Article  PubMed  CAS  Google Scholar 

  22. Jilka RL, Weinstein RS, Bellido T et al. Osteoblast programmed cell death (apoptosis): Modulation by growth factors and cytokines. J Bone Mineral Res 1998; 13: 793–802.

    Article  CAS  Google Scholar 

  23. Kehlen A, Gohring B, Langner J, Riemann D. Regulation of the expression of aminopeptidase A, aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 in renal carcinoma cells and renal tubular epitherial cells by cytokines and cAMP-increaing mediaters. Clin Exp Immunol 1998; 111: 435–41.

    Article  PubMed  CAS  Google Scholar 

  24. Nakae D, Kobayashi Y, Akai H et al. Involvement of 8-hydroxyguanine formation in the initiation of rat liver carcinogenesis by low dose levels of N-nitrosodiethylamine. Cancer Res 1997; 57: 1281–7.

    PubMed  CAS  Google Scholar 

  25. Bhat-Nakshatri P, Newton TR, Goulet RJ, Nakshatri H. NF-kappa B activation and interleukin 6 production in fibroblasts by estrogen recepter-negative breast cancer cell-derived interleukin 1 alpha. Proc Natl Acad Sci. USA 1998; 95: 6971–6.

    Article  PubMed  CAS  Google Scholar 

  26. Tran-Thang C, Kruithof E, Lahm H et al. Modulation of the plasminogen activation system by inflammatory cytokines in human colon carcinoma cells Br J Cancer 1996; 74: 846–53.

    CAS  Google Scholar 

  27. Kitamura Y, Morita I, Nihei Z et al. Effect of IL-6 on tumor cell invasion of vascular endothelial monolayers. Surg Today 1997; 27: 534–41.

    Article  PubMed  CAS  Google Scholar 

  28. Obata NH, Tamakoshi K, Shibata K et al. Effect of interleukin-6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma. Anticancer Res 1997; 17: 337–42.

    PubMed  CAS  Google Scholar 

  29. Yanase M, Tsukamoto T, Kumamoto Y. Cytokines modulate in vitro invasiveness of renal cell carcinoma cells through action on the process of cell attachment to endothelial cells. J Urol 1995; 153: 844–8.

    Article  PubMed  CAS  Google Scholar 

  30. Yoneda J, Saiki I, Fujii H et al. Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin). Clin Exp Metastasis 1992; 10: 49–59.

    PubMed  CAS  Google Scholar 

  31. Ueda M, Ueki M, Fujii H et al. Inhibitory effects of ubenimex (bestatin) on the invasion of uterine cervical carcinoma cells and their production and activation of gelatinase A. J Med 1997; 26: 175–90.

    Google Scholar 

  32. Turner AJ. Membrane alanyl aminopeptidase. In Barett AJ, Rawlings ND, Woessner JF (eds): Handbook of Proteolytic Enzymes. London: Academic Press, 1998; 996–1000.

    Google Scholar 

  33. Librach CL, Feigenbaum SL, Bass KE et al. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J Biol Chem 1994; 269: 17125–31.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kido, A., Krueger, S., Haeckel, C. et al. Possible contribution of aminopeptidase N (APN/CD13) to invasive potential enhanced by interleukin-6 and soluble interleukin-6 receptor in human osteosarcoma cell lines. Clin Exp Metastasis 17, 857–863 (1999). https://doi.org/10.1023/A:1006794617406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006794617406

Navigation