Skip to main content
Log in

MT-MMPs play pivotal roles in cancer dissemination

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs), a family of zinc-binding endopeptidases, play important roles in cancer proliferation and dissemination, and may be further associated with other diseases. In particular, membrane-type MMPs (MT-MMPs) are crucial for cancer cell invasion. In this report, we summarize the current views on the role of MT-MMPs in cancer dissemination. The regulated and restricted degradation of the extracellular matrix (ECM) surrounding the tumor surface is a trigger event for cell protrusion and invasion. This is thought to be primarily organized by MT-MMPs, since a shift in balance between cell adhesion molecules, ECM and proteolysis at the focal cell surface may result in conditions especially suitable for cancer cells to progress and invade the ECM. To resolve the physiological mechanisms of cancer invasion and migration, molecular milieu surrounding the MT-MMPs expressed on tumor cell surfaces should be further examined for each cell type, which may consequently provide a novel clinical tool to regulate cancer behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Foda H, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 2001; 1; 6(9): 478–82.

    Article  PubMed  CAS  Google Scholar 

  2. Ellerbroek S, Stack M. Membrane associated matrix metalloproteinases in metastasis. Bioessays 1999; 21(11): 940–9.

    Article  PubMed  CAS  Google Scholar 

  3. Stetler-Stevenson W, Yu A. Proteases in invasion: Matalloproteinases. Semin Cancer Biol 2001; 11(2): 143–53.

    Article  PubMed  CAS  Google Scholar 

  4. Seiki M. Membrane-type matrix metalloproteinases. APMIS 1999; 107(1): 137–43

    Article  PubMed  CAS  Google Scholar 

  5. Kadono Y, Shibahara K, Namiki M et al. Membrane type 1-matrix metalloproteinase is involved in the formation of hepatocyte growth factor/scatter factor-induced branching tubules in Madin-Darby canine kidney epithelial cells. Biochem Biophys Res Commun 1998; 251(3): 681–7.

    Article  PubMed  CAS  Google Scholar 

  6. Hotary K, Allen E, Puntrieri A et al. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type metalloproteinases 1, 2, and 3. J Cell Biol 2000; 149(6): 1309–23.

    Article  PubMed  CAS  Google Scholar 

  7. Hiraoka N, Allen E, Apel I et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 1998; 95(3): 365–77.

    Article  PubMed  CAS  Google Scholar 

  8. Kajita M, Itoh Y, Chiba T et al. Membrane-type I matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 2001; 153(5): 893–904.

    Article  PubMed  CAS  Google Scholar 

  9. Chambers A, Matrisian L. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997; 89(17): 1260–70.

    Article  PubMed  CAS  Google Scholar 

  10. Holmbeck K, Bianco P, Caterina J et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999; 99(1): 81–92.

    Article  PubMed  CAS  Google Scholar 

  11. Strongin A, Collier I, Bannikov G et al. Mechanism od cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 1995; 270(10): 5331–8.

    Article  PubMed  CAS  Google Scholar 

  12. Knauper V, Will H, Lopes-Otin C et al. Cellular mechanisms for human procollagenase-3(MMP-13) activation. Evidence that MT1-MMP(MMP-14) and gelatinase A(MMP-2) are able to generate active enzyme. J Biol Chem 1996; 271(29): 17124–31.

    Article  PubMed  CAS  Google Scholar 

  13. Cao J, Sato H, Takino T et al. The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro-gelatinase A activation. J Biol Chem 1995; 270(2): 801–5.

    Article  PubMed  CAS  Google Scholar 

  14. Itoh Y, Kajita M, Kinoh H et al. Membrane type 4 matrix metalloproteianse (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored protease. J Biol Chem 1999; 274(48): 34260–6.

    Article  PubMed  CAS  Google Scholar 

  15. Kojima S, Itoh Y, Matsumoto S et al. Membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP-25) is the second glycosylphosphatidyl inositol (GPI)-anchored MMP. FEBS Lett 2000; 480(2–3): 142–6.

    Article  PubMed  CAS  Google Scholar 

  16. Toth M, Gervasi D, Fridman R. Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells. Cancer Res 1997; 57(15): 159–67.

    Google Scholar 

  17. Lehti K, Lohi J, Valtanen H et al. Proteolytic processing of membrane-type-1 matrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem J 1998; 334(Pt 2): 345–53.

    PubMed  CAS  Google Scholar 

  18. Yana I, Weiss S. Regulation of membrane type-1 metalloproteinase activation by proprotein convertases. Mol Biol Cell 2000; 11(7): 2387–401.

    PubMed  CAS  Google Scholar 

  19. Sato H, Takino T, Okada Y et al. A matrix metalloproteinase expressed on the surface of invasive tumor cells, Nature 1994; 370: 61–5.

    Article  PubMed  CAS  Google Scholar 

  20. Sato H, Kinoshita T, Takino T et al. Activation of a recombinant membrane type 1 matrix metalloproteinase (MT1-MMP) bu furin and its interaction with tissue inhibitor of metalloproteinases (TIMP-2). FEBS Lett 1996; 393: 101–4.

    Article  PubMed  CAS  Google Scholar 

  21. Pei D, Weiss S. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 1996; 271: 9135–40.

    Article  PubMed  CAS  Google Scholar 

  22. Strongin A, Collier I, Bannikov G et al. Mechanism of cell surface activation of 72-kDa type IV collagenase-Isolation of the activated form of the membrane metalloprotease. J Biol Chem 1995; 270: 5331–8.

    Article  PubMed  CAS  Google Scholar 

  23. Imai K, Ohuchi E, Aoki T et al. Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 1996; 56(12): 2707–10.

    PubMed  CAS  Google Scholar 

  24. Rozanov D, Deryugina E, Ratnikov B et al. Mutation analysis of membrane type-1 matrix metalloproteinase (mt1-mmp). the role of the cytoplasmic tail cys574, the active site glu240, and furin cleavage motifs in oligomerization, processing, and self-proteolysis of mt1-mmp expressed in breast carcinoma cells. J Biol Chem 2001; 276(28): 25705–14.

    Article  PubMed  CAS  Google Scholar 

  25. d'Ortho MP, Will H, Atkinson S et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 1997; 250(3): 751–7.

    Article  PubMed  Google Scholar 

  26. Ohuchi E, Imai K, Fujii Y et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 1997; 272(4): 2446–51.

    Article  PubMed  CAS  Google Scholar 

  27. Koshikawa N, Giannelli G, Cirulli V et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 2000; 148(3): 615–24.

    Article  PubMed  CAS  Google Scholar 

  28. Fosang AJ, Last K, Fujii Y et al. Membrane-type 1 MMP (MMP-14) cleaves at three sites in the aggrecan interglobular domain. FEBS Lett 1998; 430(3): 186–90.

    Article  PubMed  CAS  Google Scholar 

  29. Matsumoto S, Katoh M, Saito S et al. Identification of soluble type of membrane-type matrix metalloproteinase-3 formed by alternatively spliced mRNA. Biochim Biophys Acta 1997; 1354(2): 159–70.

    PubMed  CAS  Google Scholar 

  30. English W, Puente X, Freije J et al. Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem 2000; 275(19): 14046–55.

    Article  PubMed  CAS  Google Scholar 

  31. Llano E, Pendas AM, Freije JP et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res 1999; 59(11): 2570–6.

    PubMed  CAS  Google Scholar 

  32. Pei D. Leukolysin/MMP25/MT6-MMP: A novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res 1999; 9(4): 291–303.

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Johnson AR, Ye QZ et al. Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. J Biol Chem 1999; 274(46): 33043–9.

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Yi J, Lei J et al. Expression, purification and characterization of recombinant mouse MT5-MMP protein products. FEBS Lett 1999; 462(3): 261–6.

    Article  PubMed  CAS  Google Scholar 

  35. Velasco G, Cal S, Merlos-Suarez A et al. Human MT6-matrix metalloproteinase; Identification, progelatinase A activation, and expression in brain tumors. Cancer Res 2000; 60(4): 877–82.

    PubMed  CAS  Google Scholar 

  36. Kolkenbrock H, Essers L, Ulbrich N et al. Biochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinase. Biol Chem 1999; 380(9): 1103–8.

    Article  PubMed  CAS  Google Scholar 

  37. Stetler-Stevenson W, Liotta L, Kleiner Jr D, Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis. FASEB Journal 1993; 7: 1434–41.

    PubMed  CAS  Google Scholar 

  38. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999; 274(31): 21491–4.

    Article  PubMed  CAS  Google Scholar 

  39. Butler GS, Butler MJ, Atkinson SJ et al. The TIMP2 membrane type 1 metalloproteinase ‘receptor’ regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 1998; 273(2): 871–80.

    Article  PubMed  CAS  Google Scholar 

  40. Kinoshita T, Sato H, Okada A et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem 1998; 273(26): 16098–103.

    Article  PubMed  CAS  Google Scholar 

  41. Itoh Y, Takamura A, Ito N et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion EMBO J 2001; 20(17): 4782–93.

    CAS  Google Scholar 

  42. Zhou Z, Apte SS, Soininen R, Cao R et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci 2000; 97(8): 4052–7.

    Article  PubMed  CAS  Google Scholar 

  43. Cowell S, Knauper V, Stewart ML et al. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: Associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J 1998; 331 (Pt 2): 453–8.

    PubMed  CAS  Google Scholar 

  44. Knauper V, López-Otin C, Smith B et al. Biochemical characterization of human collagenase-3. J Biol Chem 1996; 271(3): 1544–50.

    Article  PubMed  CAS  Google Scholar 

  45. Davies B, Miles DW, Happerfield LC et al. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 1993; 67(5): 1126–31.

    PubMed  CAS  Google Scholar 

  46. Tokuraku M, Sato H, Murakami S et al. Activation of the precursor of gelatinase A/72 kDa type IV collagenase/MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Cancer 1995; 64(5): 355–9.

    PubMed  CAS  Google Scholar 

  47. Polette M, Nawrocki B, Gilles C et al. MT-MMP expression and localisation in human lung and breast cancers. Virchows Arch 1996; 428(1): 29–35.

    Article  PubMed  CAS  Google Scholar 

  48. Nawrocki B, Polette M, Marchand V et al. Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas: Quantificative and morphological analyses. Int J Cancer 1997; 72(4): 556–64.

    Article  PubMed  CAS  Google Scholar 

  49. Nomura H, Sato H, Seiki M et al. Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res 1995; 55(15): 3263–6.

    PubMed  CAS  Google Scholar 

  50. Mori M, Mimori K, Shiraishi T et al. Analysis of MT1-MMP and MMP2 expression in human gastric cancers. Int J Cancer 1997; 74(3): 316–21.

    Article  PubMed  CAS  Google Scholar 

  51. Okada A, Bellocq JP, Rouyer N et al. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci 1995; 92(7): 2730–4.

    Article  PubMed  CAS  Google Scholar 

  52. Ohtani H, Motohashi H, Sato H et al. Dual over-expression pattern of membrane-type metalloproteinase-1 in cancer and stroma cells in human gastrointestinal carcinoma revealed by in situ hybridization and immunoelectron microscopy. Int J Cancer 1996; 68: 565–70.

    Article  PubMed  CAS  Google Scholar 

  53. Harada T, Arii S, Mise M et al. Membrane-type matrixmetalloproteinase-1 (MT1-MMP) gene is overexpressed in highly invasive hepatocellular carcinomas. J Hepatol 1998; 28: 231–9.

    Article  PubMed  CAS  Google Scholar 

  54. Ueno H, Nakamura H, Inoue M et al. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 1997; 57(10): 2055–60.

    PubMed  CAS  Google Scholar 

  55. Ishigaki S, Toi M, Ueno T et al. Significance of membrane type 1 matrix metalloproteinase expression in breast cancer. Jpn J Cancer Res 1999; 90(5): 516–22.

    PubMed  CAS  Google Scholar 

  56. Kanayama H, Yokota K, Kurokawa Y et al. Prognostic values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer. Cancer 1998; 82(7): 1359–66.

    Article  PubMed  CAS  Google Scholar 

  57. Yoshizaki T, Sato H, Maruyama Y et al. Increased expression of membrane type 1-matrix metalloproteinase in head and neck carcinoma. Cancer 1997; 79(1): 139–44.

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura H, Ueno H, Yamashita K et al. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 1999; 59(2): 467–3.

    PubMed  CAS  Google Scholar 

  59. Afzal S, Lalani EN, Poulsom R et al. MT1-MMP and MMP-2 mRNA expression in human ovarian tumors: Possible implications for the role of desmoplastic fibroblasts. Hum Pathol 1998; 29(2): 155–65.

    Article  PubMed  CAS  Google Scholar 

  60. Fishman DA, Kearns A, Chilukuri K et al. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen. Invasion Metastasis 1998; 18(1): 15–26.

    Article  PubMed  CAS  Google Scholar 

  61. Yamamoto M, Mohanam S, Sawaya R et al. Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 1996; 56(2): 384–92.

    PubMed  CAS  Google Scholar 

  62. Nakada M, Nakamura H, Ikeda E et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 1999; 154(2): 417–28.

    PubMed  CAS  Google Scholar 

  63. Forsyth PA, Wong H, Laing TD et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 1999; 79(11–12): 1828–35.

    Article  PubMed  CAS  Google Scholar 

  64. Heppner KJ, Matrisian LM, Jensen RA et al. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 1996; 149(1): 273–82.

    PubMed  CAS  Google Scholar 

  65. Itoh T, Tanioka M, Yoshida H et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 1998; 58(5): 1048–51.

    PubMed  CAS  Google Scholar 

  66. Fang J, Shing Y, Wiederschain D et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci 2000; 97(8): 3884–9.

    Article  PubMed  CAS  Google Scholar 

  67. Nakahara H, Howard L, Thompson E et al. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci 1997; 94(15): 7959–64.

    Article  PubMed  CAS  Google Scholar 

  68. Lehti K, Valtanen H, Wickstrom S et al. Regulation of membrane-type-1 matrix metalloproteinase activity by its cytoplasmic domain. J Biol Chem 2000; 275(20): 15006–13.

    Article  PubMed  CAS  Google Scholar 

  69. Haas TL, Davis SJ, Madri JA. Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 1998; 273(6): 3604–10.

    Article  PubMed  CAS  Google Scholar 

  70. Brooks P, Silletti S, von Schalscha T et al. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998; 92(3): 391–400.

    Article  PubMed  CAS  Google Scholar 

  71. Silletti S, Kessler T, Goldberg J et al. Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci 2001; 98(1): 119–24.

    Article  PubMed  CAS  Google Scholar 

  72. Belotti D, Paganoni P, Giavazzi R. MMP inhibitors: experimental and clinical studies. Int J Biol Markers 1999; 14(4): 232–8.

    PubMed  CAS  Google Scholar 

  73. Curran S, Murray GI. Matrix metalloproteinases in tumor invasion and metastasis. J Pathol 1999; 189(3): 300–8.

    Article  PubMed  CAS  Google Scholar 

  74. DeClerck Y, Imren S. Protease inhibitors: Role and potential therapeutic use in human cancer. Eur J Cancer 1994; 30(14): 2170–80.

    Article  Google Scholar 

  75. Nelson AR, Fingleton B, Rothenberg ML et al. Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol 2000; 18(5): 1135–49.

    PubMed  CAS  Google Scholar 

  76. McCawley LJ, Matrisian LM. Tumor progression: Defining the soil round the tumor seed. Curr Biol 2001; 11(1): R25–7.

    Article  PubMed  CAS  Google Scholar 

  77. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000; 19(56): 6642–50.

    Article  PubMed  CAS  Google Scholar 

  78. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997; 88(6): 801–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yana, I., Seiki, M. MT-MMPs play pivotal roles in cancer dissemination. Clin Exp Metastasis 19, 209–215 (2002). https://doi.org/10.1023/A:1015527220537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015527220537

Navigation