Skip to main content
Log in

Deregulated activation of matriptase in breast cancer cells

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Matriptase is an epithelial-derived, cell surface serine protease. This protease activates hepatocyte growth factor (HGF) and urokinase plasminogen activator (uPA), two proteins thought to be involved in the growth and motility of cancer cells, particularly carcinomas, and in the vascularization of tumors. Thus, matriptase may play an important role in the progression of carcinomas, such as breast cancer. We examined the regulation of activation of matriptase in human breast cancer cells, in comparison to non-transformed mammary epithelial cells 184A1N4 and MCF-10A. Results clearly indicated that unlike non-transformed mammary epithelial cells, breast cancer cells do not respond to the known activators of matriptase, serum and sphingosine 1-phosphate (S1P). Similar levels of activated matriptase were detected in breast cancer cells, grown in the presence or absence of S1P. However, up to five-fold higher levels of activated matriptase were detected in the conditioned media from the cancer cells grown in the absence of serum and S1P, when compared to non-transformed mammary epithelial cells. S1P also induces formation of cortical actin structures in non-transformed cells, but not in breast cancer cells. These results show that in non-transformed cells, S1P induces a rearrangement of the actin cytoskeleton and stimulates proteolytic activity on cell surfaces. In contrast, S1P treatment of breast cancer cells does not activate matriptase, and instead these cells constitutively activate the protease. In addition, breast cancer cells respond differently to S1P in terms of the regulation of actin cytoskeletal structures. Matriptase and its cognate inhibitor, HGF activator inhibitor 1 (HAI-1) colocalize on the cell periphery of breast cancer cells and form stable complexes in the extracellular milieu, suggesting that the inhibitor serves to prevent undesired proteolysis in these cells. Finally, we demonstrate that treatment of T-47D cells with epidermal growth factor (EGF), which promotes cell ruffling, stimulates increased accumulation of activated matriptase at the sites of membrane ruffling, suggesting a possible functional role at these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin CY, Anders J, Johnson M et al. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 1999; 274: 18231–6.

    Article  PubMed  CAS  Google Scholar 

  2. Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: Use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA 1999; 96: 11054–61.

    Article  PubMed  CAS  Google Scholar 

  3. Tanimoto H, Underwood LJ, Wang Y et al. Ovarian tumor cells express a transmembrane serine protease: A potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 2001; 22: 104–14.

    Article  PubMed  CAS  Google Scholar 

  4. Kim MG, Chen C, Lyu MS et al. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 1999; 49: 420–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hooper JD, Clements JA, Quigley JP et al. Type II transmembrane serine proteases, Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 2001; 276: 857–60.

    Article  PubMed  CAS  Google Scholar 

  6. Oberst M, Anders J, Xie B et al. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol 2001; 158: 1301–11.

    PubMed  CAS  Google Scholar 

  7. Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000; 275: 36720–5.

    Article  PubMed  CAS  Google Scholar 

  8. Takeuchi T, Harris JL, Huang W et al. Cellular localization of membrane-type serine protease 1 and identification of protease activated receptor-2 and single-chain urokinase-type plasiminigen activator as substrates. J Biol Chem 2000; 275: 26333–42.

    Article  PubMed  CAS  Google Scholar 

  9. Benaud C, Dickson RB, Lin CY. Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem 2001; 268: 1439–47.

    Article  PubMed  CAS  Google Scholar 

  10. Benaud C, Oberst M, Hobson JP et al. Sphingosine-1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem 2002; 277: 10539–46.

    Article  PubMed  CAS  Google Scholar 

  11. Lin CY, Wang JK, Torri J et al. Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. J Biol Chem 1997; 272: 9147–52.

    Article  PubMed  CAS  Google Scholar 

  12. Lin CY, Anders J, Johnson M et al. Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 1999; 274: 18237–42.

    Article  PubMed  CAS  Google Scholar 

  13. Shi YE, Torri J, Yieh L et al. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 1993; 53: 1409–15.

    PubMed  CAS  Google Scholar 

  14. Shimomura T, Denda K, Kitamura A et al. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272: 6370–6.

    Article  PubMed  CAS  Google Scholar 

  15. Kawaguchi T, Qin L, Shimomura T et al. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272: 27558–64.

    Article  PubMed  CAS  Google Scholar 

  16. Wells A. Tumor invasion: Role of growth factor-induced cell motility. Adv Cancer Res 2000; 78: 31–101.

    Article  PubMed  CAS  Google Scholar 

  17. Xing RH, Rabbani SA. Overexpression of urokinase receptor in breast cancer cells results in increased tumor invasion, growth and metastasis. Int J Cancer 1996; 67: 423–9.

    Article  PubMed  CAS  Google Scholar 

  18. Holst-Hansen C, Johannessen B, Hoyer-Hansen G et al. Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis 1996; 14: 297–307.

    PubMed  CAS  Google Scholar 

  19. Tsunezuka Y, Kinoh H, Takino T et al. Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 1996; 56: 5678–83.

    PubMed  CAS  Google Scholar 

  20. Powell WC, Knox JD, Navre M et al. Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 1993; 53: 417–22.

    PubMed  CAS  Google Scholar 

  21. Look MP, Foekens JA. Clinical relevance of the urokinase plasminogen activator system in breast cancer. APMIS 1999; 107: 150–9.

    Article  PubMed  CAS  Google Scholar 

  22. Barsky SH, Siegal GP, Jannotta F et al. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest 1983; 49: 140–7.

    PubMed  CAS  Google Scholar 

  23. De Clerck YA, Perez N, Shimada H, Boone TC et al. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52: 701–8.

    CAS  Google Scholar 

  24. Imren S, Kohn DB, Shimada H, Blavier L et al. Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res 1996; 56: 2891–5.

    PubMed  CAS  Google Scholar 

  25. Albini A, Melchiori A, Santi L et al. Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 1991; 83: 775–9.

    PubMed  CAS  Google Scholar 

  26. Khokha R, Zimmer MJ, Graham CH et al. Suppression of invasion by inducible expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in B16-F10 melanoma cells. J Natl Cancer Inst 1992; 84: 1017–22.

    PubMed  CAS  Google Scholar 

  27. Lee MJ, Thangada S, Claffey KP et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99: 301–12.

    Article  PubMed  CAS  Google Scholar 

  28. Takaishi K, Sasaki T, Kotani H et al. Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J Cell Biol 1997; 139: 1047–59.

    Article  PubMed  CAS  Google Scholar 

  29. Braga VM, Machesky LM, Hall A et al. The small GTPase Rho and Rac are required for the establishment of eadherin-dependent cell-cell contacts. J Cell Biol 1997; 137: 1421–31.

    Article  PubMed  CAS  Google Scholar 

  30. Sahai E, Marshall CJ. Rho-GTPase and Cancer. Nature Rev Cancer 2002; 2: 133–42.

    Article  Google Scholar 

  31. Wang F, Van Brocklyn JR, Edsall L et al. Sphingosine-1-phosphate inhibits motility of human breast cancer cells independently of cell surface receptors. Cancer Res 1999; 59: 6185–91.

    PubMed  CAS  Google Scholar 

  32. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer 1999; 81: 682–7.

    Article  PubMed  CAS  Google Scholar 

  33. van Golen KL, Wu ZF, Qiao XT et al. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2000; 2: 418–25.

    Article  PubMed  CAS  Google Scholar 

  34. Laug WE, Cao XR, Yu YB et al. Inhibition of invasion of HT1080 sarcoma cells expressing recombinant plasminogen activator inhibitor 2. Cancer Res 1993; 53: 6051–7.

    PubMed  CAS  Google Scholar 

  35. Menendez-Arias L, Risco C, Oroszlan S et al. Isolation and characterization of alpha 2-macroglobulin-protease complexes from purified mouse mammary tumor virus and culture supernatants from virus-infected cell lines. J Biol Chem 1992; 267: 11392–8.

    PubMed  CAS  Google Scholar 

  36. Soff GA, Sanderowitz J, Gately S et al. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 1995; 96: 2593–600.

    Article  PubMed  CAS  Google Scholar 

  37. Wang M, Liu YE, Greene J et al. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 1997; 14: 2767–74.

    Article  PubMed  CAS  Google Scholar 

  38. Knoop A, Andreasen PA, Andersen JA et al. Prognostic significance of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in primary breast cancer. Br J Cancer 1998; 77: 932–40.

    PubMed  CAS  Google Scholar 

  39. Foekens JA, Peters HA, Look MP et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000; 60: 636–43.

    PubMed  CAS  Google Scholar 

  40. Foekens JA, Schmitt M, van Putten WL et al. Plasminogen activator inhibitor-1 and prognosis in primary breast cancer. J Clin Oncol 1994; 12: 1648–58.

    PubMed  CAS  Google Scholar 

  41. McCarthy K, Maguire T, McGreal G et al. High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 1999; 84: 44–8.

    Article  PubMed  CAS  Google Scholar 

  42. Remacle A, McCarthy K, Noel A et al. High levels of TIMP-2 correlate with adverse prognosis in breast cancer. Int J Cancer 2000; 89: 118–21.

    Article  PubMed  CAS  Google Scholar 

  43. Bajou K, Noel A, Gerard RD et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998; 4: 923–8.

    Article  PubMed  CAS  Google Scholar 

  44. Kataoka H, Shimomura T, Kawaguchi T et al. Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenvironment. J Biol Chem 2000; 275: 40453–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benaud, C.M., Oberst, M., Dickson, R.B. et al. Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis 19, 639–649 (2002). https://doi.org/10.1023/A:1020985632550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020985632550

Navigation