Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

APC, Signal transduction and genetic instability in colorectal cancer

Abstract

Colorectal cancer arises through a gradual series of histological changes, each of which is accompanied by a specific genetic alteration. In general, an intestinal cell needs to comply with two essential requirements to develop into a cancer: it must acquire selective advantage to allow for the initial clonal expansion, and genetic instability to allow for multiple hits in other genes that are responsible for tumour progression and malignant transformation. Inactivation of APC — the gene responsible for most cases of colorectal cancer — might fulfil both requirements.

Key Points

  • Colorectal cancers arise through a gradual series of histological changes — the adenoma–carcinoma sequence — resulting from specific genetic 'hits' at a handful of oncogenes and tumour suppressor genes.

  • A crucial determinant of the biological properties of the resulting tumour is the temporal sequence rather than the accumulation of these genetic hits: APC (adenomatous polyposis coli)and KRAS mutations are associated with initiation and progression of the benign tumour, whereas loss of TP53, SMAD4 and SMAD2 function is correlated with malignant transformation.

  • The APC gene is regarded as the gene for colorectal cancer as it is found mutated in most sporadic cases regardless of the histological stage. APC encodes a multifunctional protein that is involved in several processess, including signal transduction, cell adhesion and migration, proliferation, apoptosis and differentiation.

  • Tumorigenesis is an evolutionary process: a cell must acquire a selective growth advantage to allow clonal expansion. The selective advantage provided by loss of APC function resides in the uncontrolled activation of the WNT/β-catenin signal transduction pathway.

  • Genetic instability is an important feature of the nascent (colorectal) cancer cell, as it continuously ensures sufficient genetic variability to overcome additional selection barriers. Two types of genetic instability are known in colorectal cancer: microsatellite instability (MIN) and chromosomal instability (CIN).

  • The carboxyl terminus of APC encompasses functional domains (microtubulin- and EB1-binding) that ensure proper attachment of the mitotic spindle to the kinetochore. Loss of this function elicits CIN.

  • The APC mutation that triggers tumorigenesis by activating β-catenin signalling also causes CIN, although with low penetrance owing to surveillance by the cell cycle and mitotic checkpoint machinery. Additional synergisms between APC and other tumour-suppressor genes in eliciting CIN will progressively lead to malignant transformation and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The adenomatous polyposis coli (APC) protein.
Figure 2: The WNT signalling pathway.
Figure 3: Interdependence of germ-line and somatic APC mutations in FAP polyps.
Figure 4: Models of colorectal tumorigenesis.
Figure 5: The mitotic spindle in relation to APC and CIN.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  2. Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).Analysis of sporadic colorectal tumours showed that APC mutations are present in the earliest tumour stages, and that the frequency of such mutations remains constant as tumours progress from benign to malignant stages.

    CAS  PubMed  Google Scholar 

  3. Polakis, P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim. Biophys. Acta 1332, F127–F147 (1997).

    CAS  PubMed  Google Scholar 

  4. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438 (2001).APC -mutant embryonic stem cells have extensive chromosomal, centrosomal and spindle aberrations, providing evidence for a role of APC in CIN. APC accumulates at the kinetochore during mitosis.

    CAS  PubMed  Google Scholar 

  5. Kaplan, K. B. et al. A role for the Adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol. 3, 429–432 (2001).Cells carrying a truncated APC gene ( ApcMin) are defective in chromosome segregation. During mitosis, APC localizes to the ends of microtubules embedded in kinetochores and forms a complex with the checkpoint proteins BUB1 and BUB3. In vitro , APC is a high-affinity substrate for BUB kinases.

    CAS  PubMed  Google Scholar 

  6. Boland, C. R. & Ricciardiello, L. How many mutations does it take to make a tumor? Proc. Natl Acad. Sci. USA 96, 14675–14677 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nature Med. 5, 11–12 (1999).

    CAS  PubMed  Google Scholar 

  8. Loeb, L. A. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001).

    CAS  PubMed  Google Scholar 

  9. Greenlee, R. T., Murray, T., Bolden, S. & Wingo, P. A. Cancer statistics, 2000. CA Cancer J. Clin. 50, 7–33 (2000).

    CAS  PubMed  Google Scholar 

  10. Pisani, P., Parkin, D. M., Bray, F. & Ferlay, J. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer 83, 18–29 (1999).

    CAS  PubMed  Google Scholar 

  11. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).Colorectal tumour development and progression results from the accumulation of somatic genetic alterations (mutations) in both oncogenes and tumour-suppressor genes. Mutations in four to five genes may be necessary for the development of a malignant tumour; fewer changes may suffice for benign tumour formation.

    CAS  PubMed  Google Scholar 

  12. Jen, J. et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res. 54, 5523–5526 (1994).

    CAS  PubMed  Google Scholar 

  13. Smith, A. J. et al. Somatic APC and KRAS codon 12 mutations in aberrant crypt foci from human colons. Cancer Res. 54, 5527–5530 (1994).

    CAS  PubMed  Google Scholar 

  14. Okamoto, M. et al. Loss of constitutional heterozygosity in colon carcinoma from patients with familial polyposis coli. Nature 331, 273–277 (1988).

    CAS  PubMed  Google Scholar 

  15. Solomon, E. et al. Chromosome 5 allele loss in human colorectal carcinomas. Nature 328, 616–619 (1987).Following the localization of the FAP gene, sporadic colorectal adenocarcinomas were analysed for LOH in chromosome 5q. At least 20% of these tumours had lost one of the alleles present in matched normal tissue. This indicated that LOH at chromosome 5q might be a crucial step in the progression of colorectal cancer.

    CAS  PubMed  Google Scholar 

  16. Forrester, K., Almoguera, C., Han, K., Grizzle, W. E. & Perucho, M. Detection of high incidence of KRAS oncogenes during human colon tumorigenesis. Nature 327, 298–303 (1987).

    CAS  PubMed  Google Scholar 

  17. Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).References 16 and 17 are the first two papers to show a high incidence of KRAS gene mutations in human colorectal cancers, mainly in codon 12, and that the mutations usually precede the development of malignancy.

    CAS  PubMed  Google Scholar 

  18. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    CAS  PubMed  Google Scholar 

  19. Pretlow, T. P., Brasitus, T. A., Fulton, N. C., Cheyer, C. & Kaplan, E. L. KRAS mutations in putative preneoplastic lesions in human colon. J. Natl Cancer Inst. 85, 2004–2007 (1993).

    CAS  PubMed  Google Scholar 

  20. Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).Analysis of the clonal composition of human colorectal tumours by means of X–linked restriction-fragment length polymorphisms. The results support a monoclonal origin for colorectal neoplasms, and indicate that a gene on the short arm of chromosome 17 might be associated with progression from the benign to the malignant state.

    CAS  PubMed  Google Scholar 

  21. Law, D. J. et al. Concerted nonsyntenic allelic loss in human colorectal carcinoma. Science 241, 961–965 (1988).

    CAS  PubMed  Google Scholar 

  22. Vogelstein, B. et al. Allelotype of colorectal carcinomas. Science 244, 207–211 (1989).

    CAS  PubMed  Google Scholar 

  23. Rodrigues, N. R. et al. p53 mutations in colorectal cancer. Proc. Natl Acad. Sci. USA 87, 7555–7559 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baker, S. J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    CAS  PubMed  Google Scholar 

  25. Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353 (1996).

    CAS  PubMed  Google Scholar 

  26. Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    CAS  PubMed  Google Scholar 

  27. Thiagalingam, S. et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genet. 13, 343–346 (1996).

    CAS  PubMed  Google Scholar 

  28. Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552 (1996).

    CAS  PubMed  Google Scholar 

  29. Fodde, R. & Smits, R. Disease model: familial adenomatous polyposis. Trends Mol. Med. 7, 369–373 (2001).

    CAS  PubMed  Google Scholar 

  30. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res.. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  31. Duesberg, P., Rausch, C., Rasnick, D. & Hehlmann, R. Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc. Natl Acad. Sci. USA 95, 13692–13697 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rasnick, D. & Duesberg, P. H. How aneuploidy affects metabolic control and causes cancer. Biochem. J. 340, 621–630 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  34. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).The first report showing that approximately 10% of colorectal carcinomas carry somatic deletions at simple sequence repeats. Tumours with these mutations show distinctive genotypic and phenotypic features. These mutations reflect a previously undescribed form of carcinogenesis in the colon mediated by a mutation in a DNA replication factor that results in reduced fidelity for replication or repair (a 'mutator mutation').

    CAS  PubMed  Google Scholar 

  35. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    CAS  PubMed  Google Scholar 

  36. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    CAS  PubMed  Google Scholar 

  37. Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl Acad. Sci. USA 91, 6319–6323 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eshleman, J. R. et al. Increased mutation rate at the HPRT locus accompanies microsatellite instability in colon cancer. Oncogene 10, 33–37 (1995).

    CAS  PubMed  Google Scholar 

  39. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).Colorectal tumours without microsatellite instability show a defect in chromosome segregation, resulting in gains or losses. This form of chromosomal instability persists throughout the lifetime of the tumour cell and is not simply related to chromosome number. Whereas microsatellite instability is a recessive trait, chromosomal instability seems to be dominant.

    CAS  PubMed  Google Scholar 

  40. Thiagalingam, S. et al. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc. Natl Acad. Sci. USA 98, 2698–2702 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).The authors show that CIN is associated with the loss of function of a mitotic checkpoint. Moreover, in a few cases, loss of this checkpoint was associated with the mutational inactivation of a human homologue of the BUB1 gene that controls mitotic checkpoints and chromosome segregation in yeast.

    CAS  PubMed  Google Scholar 

  42. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    CAS  PubMed  Google Scholar 

  43. Giaretti, W. A model of DNA aneuploidization and evolution in colorectal cancer. Lab. Invest. 71, 904–910 (1994).

    CAS  PubMed  Google Scholar 

  44. Bardi, G. et al. Cytogenetic comparisons of synchronous carcinomas and polyps in patients with colorectal cancer. Br. J. Cancer 76, 765–769 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  46. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    CAS  PubMed  Google Scholar 

  47. Stoler, D. L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA 96, 15121–15126 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  PubMed  Google Scholar 

  49. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).References 48 and 49 are the first reports showing the molecular cloning of the APC gene.

    CAS  PubMed  Google Scholar 

  50. Nagase, H. & Nakamura, Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum. Mutat. 2, 425–434 (1993).

    CAS  PubMed  Google Scholar 

  51. Su, L. K., Vogelstein, B. & Kinzler, K. W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).

    CAS  PubMed  Google Scholar 

  52. Rubinfeld, B. et al. Association of the APC gene product with β-catenin. Science 262, 1731–1734 (1993).References 51 and 52 show how two cellular proteins were found to associate with APC, and that these were identified as the E-cadherin-associated proteins α- and β-catenin. A 15-amino-acid motif that is repeated three times in APC was shown to be sufficient for interaction with the catenins.

    CAS  PubMed  Google Scholar 

  53. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3 β. Curr. Biol. 8, 573–581 (1998).

    CAS  PubMed  Google Scholar 

  54. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998).

    CAS  PubMed  Google Scholar 

  55. Fagotto, F. et al. Domains of axin involved in protein–protein interactions, Wnt pathway inhibition, and intracellular localization. J. Cell Biol. 145, 741–756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kishida, M. et al. Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene 18, 979–985 (1999).

    CAS  PubMed  Google Scholar 

  57. Ikeda, S., Kishida, M., Matsuura, Y., Usui, H. & Kikuchi, A. GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by β-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19, 537–545 (2000).

    CAS  PubMed  Google Scholar 

  58. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    CAS  PubMed  Google Scholar 

  59. Marikawa, Y. & Elinson, R. P. β-TrCP is a negative regulator of Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech. Dev. 77, 75–80 (1998).

    CAS  PubMed  Google Scholar 

  60. Bhanot, P. et al. A new member of the Frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    CAS  PubMed  Google Scholar 

  61. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    CAS  PubMed  Google Scholar 

  62. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    CAS  PubMed  Google Scholar 

  63. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    CAS  PubMed  Google Scholar 

  64. Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    CAS  PubMed  Google Scholar 

  65. Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000).

    CAS  PubMed  Google Scholar 

  66. Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol. 2, 653–660 (2000).

    CAS  PubMed  Google Scholar 

  67. Eleftheriou, A., Yoshida, M. & Henderson, B. R. Nuclear export of human beta-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J. Biol. Chem. 276, 25883–25888 (2001).

    CAS  PubMed  Google Scholar 

  68. Ben-Ze'ev, A. & Geiger, B. Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Curr. Opin. Cell Biol. 10, 629–639 (1998).

    CAS  PubMed  Google Scholar 

  69. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994).

    CAS  PubMed  Google Scholar 

  70. Smith, K. J. et al. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res. 54, 3672–3675 (1994).

    CAS  PubMed  Google Scholar 

  71. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol. 148, 505–518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    CAS  PubMed  Google Scholar 

  73. Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).

    CAS  PubMed  Google Scholar 

  74. Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  PubMed  Google Scholar 

  75. Deka, J., Kuhlmann, J. & Muller, O. A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein tau. Eur. J. Biochem. 253, 591–597 (1998).

    CAS  PubMed  Google Scholar 

  76. Askham, J. M., Moncur, P., Markham, A. F. & Morrison, E. E. Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 19, 1950–1958 (2000).

    CAS  PubMed  Google Scholar 

  77. Tirnauer, J. S. & Bierer, B. E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149, 761–766 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).TCF4 transactivates transcription only when associated with β-catenin. Nuclei of APC−/− colon carcinoma cells were found to contain a stable and constitutively active β-catenin–TCF4 complex. Reintroduction of APC removed β-catenin from TCF4 and abrogated the transcriptional transactivation.

    CAS  PubMed  Google Scholar 

  79. Morin, P. J. et al. Activation of β-catenin-TCF signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).Colorectal tumours with intact APC were found to contain activating β-catenin mutations that alter functionally significant phosphorylation sites. These results indicate that regulation of β-catenin is crucial to APC's tumour-suppressing function and that loss of this function can be achieved by mutations in either APC or β–catenin.

    CAS  PubMed  Google Scholar 

  80. Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).Genetic demonstration that the carboxyl terminus of APC does not encompass its tumour-suppressing function. A mouse model carrying a targeted mutation in APC codon 1638, Apc1638T, is viable and tumour free. The truncated Apc protein encompasses three of seven 20-amino-acid repeats and one SAMP motif. The results indicate that the association with DLG, EB1, and microtubulin is not as crucial for tumour suppression as the proper β–catenin regulation by APC.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/β-catenin/TCF pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

  82. Liu, W. et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nature Genet. 26, 146–147 (2000).

    CAS  PubMed  Google Scholar 

  83. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genet. 24, 245–250 (2000).

    CAS  PubMed  Google Scholar 

  84. Clevers, H. Axin and hepatocellular carcinomas. Nature Genet. 24, 206–208 (2000).

    CAS  PubMed  Google Scholar 

  85. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    CAS  PubMed  Google Scholar 

  86. Miyaki, M. et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011–3020 (1994).

    CAS  PubMed  Google Scholar 

  87. Ichii, S. et al. Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). Oncogene 8, 2399–2405 (1993).

    CAS  PubMed  Google Scholar 

  88. Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med. 5, 1071–1075 (1999).Familial adenomatous polyposis patients with germ-line APC mutations within a small region around codon 1300 mainly show allelic loss in their colorectal adenomas, in contrast to others, the 'second hits' of which tend to occur by truncating mutations in the mutation cluster region. The results indicate that different APC mutations provide cells with different selective advantages, with mutations close to codon 1,300 providing the greatest advantage. Allelic loss is selected strongly in cells with one mutation near codon 1300.

    CAS  PubMed  Google Scholar 

  89. Rowan, A. J. et al. APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'. Proc. Natl Acad. Sci. USA 97, 3352–3357 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Smits, R. et al. Somatic Apc mutations are selected upon their capacity to inactivate the β-catenin downregulating activity. Genes Chromosom. Cancer 29, 229–239 (2000).

    CAS  PubMed  Google Scholar 

  91. Kim, K., Pang, K. M., Evans, M. & Hay, E. D. Overexpression of β-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol. Biol. Cell 11, 3509–3523 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    CAS  PubMed  Google Scholar 

  93. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    CAS  PubMed  Google Scholar 

  94. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999).References 92–94 are the first reports on the identification of downstream targets of the APC/β-catenin pathway. MYC was shown to be repressed by wild-type APC and activated by β-catenin, and through TCF4 binding sites in its promoter. β-catenin also activates cyclin D1 transcription through promoter sequences to the consensus TCF/LEF-binding sites. The oncoprotein p21ras further activates transcription of the cyclin D1 gene, through sites within the promoter that bind the transcriptional regulators ETS or CREB.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Risio, M., Coverlizza, S., Ferrari, A., Candelaresi, G. L. & Rossini, F. P. Immunohistochemical study of epithelial cell proliferation in hyperplastic polyps, adenomas, and adenocarcinomas of the large bowel. Gastroenterology 94, 899–906 (1988).

    CAS  PubMed  Google Scholar 

  96. Kikuchi, Y., Dinjens, W. N. & Bosman, F. T. Proliferation and apoptosis in proliferative lesions of the colon and rectum. Virchows Arch. 431, 111–117 (1997).

    CAS  PubMed  Google Scholar 

  97. Bostick, R. M. et al. Colorectal epithelial cell proliferative kinetics and risk factors for colon cancer in sporadic adenoma patients. Cancer Epidemiol. Biomarkers Prev. 6, 1011–1019 (1997).

    CAS  PubMed  Google Scholar 

  98. Johnston, P. G., O'Brien, M. J., Dervan, P. A. & Carney, D. N. Immunohistochemical analysis of cell kinetic parameters in colonic adenocarcinomas, adenomas, and normal mucosa. Hum. Pathol. 20, 696–700 (1989).

    CAS  PubMed  Google Scholar 

  99. Crawford, H. C. et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 18, 2883–2891 (1999).

    CAS  PubMed  Google Scholar 

  100. Brabletz, T., Jung, A., Dag, S., Hlubek, F. & Kirchner, T. β-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol. 155, 1033–1038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wielenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am. J. Pathol. 154, 515–523 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brabletz, T., Herrmann, K., Jung, A., Faller, G. & Kirchner, T. Expression of nuclear β-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am. J. Pathol. 156, 865–870 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mann, B. et al. Target genes of β-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl Acad. Sci. USA 96, 1603–1608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Smith, K. J. et al. The APC gene product in normal and tumor cells. Proc. Natl Acad. Sci. USA 90, 2846–2850 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Midgley, C. A. et al. APC expression in normal human tissues. J. Pathol. 181, 426–433 (1997).

    CAS  PubMed  Google Scholar 

  106. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    CAS  PubMed  Google Scholar 

  107. Barker, N., Huls, G., Korinek, V. & Clevers, H. Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am. J. Pathol. 154, 29–35 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Melhem, M. F. et al. Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors. Cancer Res. 52, 5853–5864 (1992).

    CAS  PubMed  Google Scholar 

  109. Yuwono, M., Rossi, T. M., Fisher, J. E. & Tjota, A. Oncogene expression in patients with familial polyposis coli/Gardner's syndrome. Int. Arch. Allergy Immunol. 111, 89–95 (1996).

    CAS  PubMed  Google Scholar 

  110. Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target TCF1. Science 285, 1923–1926 (1999).

    CAS  PubMed  Google Scholar 

  111. Shih, I. M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl Acad. Sci. USA 98, 2640–2645 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Moser, A. R., Dove, W. F., Roth, K. A. & Gordon, J. I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol. 116, 1517–1526 (1992).

    CAS  PubMed  Google Scholar 

  113. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Doxsey, S. The centrosome — a tiny organelle with big potential. Nature Genet. 20, 104–106 (1998).

    CAS  PubMed  Google Scholar 

  115. Aladjem, M. I. et al. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr. Biol. 8, 145–155 (1998).

    CAS  PubMed  Google Scholar 

  116. Hao, X., Tomlinson, I., Ilyas, M., Palazzo, J. P. & Talbot, I. C. Reciprocity between membranous and nuclear expression of β-catenin in colorectal tumours. Virchows Arch. 431, 167–172 (1997).

    CAS  PubMed  Google Scholar 

  117. Brabletz, T. et al. Nuclear overexpression of the oncoprotein β-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol. Res. Pract. 194, 701–704 (1998).

    CAS  PubMed  Google Scholar 

  118. Smits, R. et al. E-cadherin and adenomatous polyposis coli mutations are synergistic in intestinal tumor initiation in mice. Gastroenterology 119, 1045–1053 (2000).

    CAS  PubMed  Google Scholar 

  119. Gottardi, C. J., Wong, E. & Gumbiner, B. M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J. Cell Biol. 153, 1049–1060 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Giaretti, W. et al. K-ras-2 G–C and G–T transversions correlate with DNA aneuploidy in colorectal adenomas. Gastroenterology 108, 1040–1047 (1995).

    CAS  PubMed  Google Scholar 

  121. Nigro, S., Geido, E., Infusini, E., Orecchia, R. & Giaretti, W. Transfection of human mutated K-ras in mouse NIH-3T3 cells is associated with increased cloning efficiency and DNA aneuploidization. Int. J. Cancer 67, 871–875 (1996).

    CAS  PubMed  Google Scholar 

  122. Giaretti, W. et al. Intratumor heterogeneity of K-ras2 mutations in colorectal adenocarcinomas: association with degree of DNA aneuploidy. Am. J. Pathol. 149, 237–245 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Giaretti, W. et al. Specific K-ras2 mutations in human sporadic colorectal adenomas are associated with DNA near-diploid aneuploidy and inhibition of proliferation. Am. J. Pathol. 153, 1201–1209 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Orecchia, R. et al. K-ras activation in vitro affects G1 and G2M cell-cycle transit times and apoptosis. J. Pathol. 190, 423–429 (2000).

    CAS  PubMed  Google Scholar 

  125. Saavedra, H. I. et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19, 3948–3954 (2000).

    CAS  PubMed  Google Scholar 

  126. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of Mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    CAS  PubMed  Google Scholar 

  127. Fukasawa, K., Wiener, F., Vande Woude, G. F. & Mai, S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15, 1295–1302 (1997).

    CAS  PubMed  Google Scholar 

  128. Glick, A. et al. Defects in transforming growth factor-β signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc. Natl Acad. Sci. USA 96, 14949–14954 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yin, X. Y., Grove, L., Datta, N. S., Long, M. W. & Prochownik, E. V. C-myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene 18, 1177–1184 (1999).

    CAS  PubMed  Google Scholar 

  130. Li, Q. & Dang, C. V. c-Myc overexpression uncouples DNA replication from mitosis. Mol. Cell Biol. 19, 5339–5351 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shao, C. et al. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Proc. Natl Acad. Sci. USA 97, 7405–7410 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Samowitz, W. S. et al. β-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res. 59, 1442–1444 (1999).

    CAS  PubMed  Google Scholar 

  133. Lynch, H. T. & Lynch, J. Lynch syndrome: genetics, natural history, genetic counseling, and prevention. J. Clin. Oncol. 18, 19S–31S (2000).

    CAS  PubMed  Google Scholar 

  134. Zhang, H. et al. Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res. 59, 3021–3027 (1999).

    CAS  PubMed  Google Scholar 

  135. Hickman, M. J. & Samson, L. D. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc. Natl Acad. Sci. USA 96, 10764–10769 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Fishel, R. Mismatch repair, molecular switches, and signal transduction. Genes Dev. 12, 2096–2101 (1998).

    CAS  PubMed  Google Scholar 

  137. Fishel, R. Signaling mismatch repair in cancer. Nature Med. 5, 1239–1241 (1999).

    CAS  PubMed  Google Scholar 

  138. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, Q., Zhang, H., Fishel, R. & Greene, M. I. BRCA1 and cell signaling. Oncogene 19, 6152–6158 (2000).

    CAS  PubMed  Google Scholar 

  140. Eshleman, J. R. et al. Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17, 719–725 (1998).

    CAS  PubMed  Google Scholar 

  141. Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    CAS  PubMed  Google Scholar 

  142. Cotran, R. Collins, K. V. & Robbins, T. Pathologic Basis of Disease (W. B. Saunders Company, Philadelphia, USA, 1999).

    Google Scholar 

  143. Bird, R. P. Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Lett. 93, 55–71 (1995).

    CAS  PubMed  Google Scholar 

  144. Takayama, T. et al. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N. Engl. J. Med. 339, 1277–1284 (1998).

    CAS  PubMed  Google Scholar 

  145. Howe, J. R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).

    CAS  PubMed  Google Scholar 

  146. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nature Genet. 28, 184–187 (2001).

    CAS  PubMed  Google Scholar 

  147. Zhu, Y., Richardson, J. A., Parada, L. F. & Graff, J. M. Smad3 mutant mice develop metastatic colorectal cancer. Cell 94, 703–714 (1998).

    CAS  PubMed  Google Scholar 

  148. Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113–6117 (1999).

    CAS  PubMed  Google Scholar 

  149. Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19, 1868–1874 (2000).

    CAS  PubMed  Google Scholar 

  150. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    CAS  PubMed  Google Scholar 

  151. Jass, J. R. Serrated route to colorectal cancer: back street or super highway? J. Pathol. 193, 283–285 (2001).

    CAS  PubMed  Google Scholar 

  152. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    CAS  PubMed  Google Scholar 

  153. Massagué, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Fodde.

Related links

Related links

DATABASE LINKS

Flybase:

 Armadillo

 InterPro:

 F-box

 LocusLink:

 APC

Apc

axin

BRCA1

BUB1

cadherin

E-cadherin

β-catenin

CD44

conductin

cyclin D1

Dishevelled

EB/RP

EB1

Frizzled

GSK3β

Groucho

KRAS

LRP6

MAPK

matrilysin

MDM2

MLH1

MSH2

MSH6

MYC

PMS2

SMAD2

SMAD4

TCF4

Tcf4

TGF-β

TP53

βTrCP

urokinase-type plasminogen activator receptor

WNT

 OMIM

FAP

HNPCC

 Saccharomyces Genome Database

Bim1

Mal3

FURTHER INFORMATION

APC Mutation Database

The Hopkins hereditary colon cancer web site

IARC Unit of Descriptive Epidemiology information

The Internet Pathology Laboratory

Roel Nusse's Wnt web site

Glossary

DYSPLASIA

Disordered growth: that is, an abnormally organized cell. The alterations include size, shape (pleomorphism), hypochromatic nuclei, and also architectural orientation of adult cells, generally representing a premalignant stage.

LOSS OF HETEROZYGOSITY

(LOH). In cells that carry a mutated allele of a tumour-suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele. Regions with high frequency of LOH are believed to harbour tumour-suppressor genes.

KNUDSON'S TWO-HIT-MODEL

Proto-oncogenes become active oncogenes by a single 'gain-of-function' (activating) mutation, whereas two inactivating 'hits' (mutations) are required to achieve loss of function in a tumour-suppressor gene.

MISMATCH REPAIR

A system to repair base-pair mismatches that can occur, for instance, during DNA replication. Mutations in genes that encode components of the mismatch-repair machinery result in microsatellite instability (MIN).

BUB1

This gene encodes one of the components of a complex that localizes to chromosomal kinetochores and mediates the mitotic-spindle checkpoint. This checkpoint inhibits the metaphase to anaphase transition until all the chromosomes are properly attached to the mitotic spindle.

SCF (FOR SKP/CULLIN/F-BOX) COMPLEXES

In these so-called E3-ubiquitin ligase complexes, F-box proteins recognize substrates, after which ubiquitin is enzymatically transferred by the complex to a lysine residue on the substrate. The ubiquitin tail marks the substrate protein for degradation by the proteasome.

TCF

Transcription factors of the T-cell factor/lymphoid-enhancer factor (LEF) family that bind to DNA HMG boxes and constitute the most downstream components of the WNT pathway. Mammals possess four TCF/LEF genes, whereas worms and flies each carry one Tcf gene in heir genome.

ADHERENS JUNCTIONS

Intercellular adhesion structures that tightly seal the lateral spaces between cells in simple epithelia. They contain the intercellular adhesion molecule E-cadherin, and α- and β-catenin.

ALLELIC IMBALANCE

The hallmark of chromosomal instability at the molecular level, representing losses or gains of specific chromosomal regions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fodde, R., Smits, R. & Clevers, H. APC, Signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1, 55–67 (2001). https://doi.org/10.1038/35094067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094067

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing