Skip to main content

Molecular Mechanisms Involved in GLUT4 Translocation in Muscle during Insulin and Contraction Stimulation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Studies in mammalian cells have established the existence of numerous intracellular signaling cascades that are critical intermediates in the regulation of various biological functions. Over the past few years considerable research has shown that many of these signaling proteins are expressed in skeletal muscle. However, the detailed mechanisms involved in the regulation of glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface membrane in response to insulin and contractions in skeletal muscle are not well understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alblas, J., E. J. van Corven, P. L. Hordijk, G. Milligan, and W. H. Moolenaar. Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by α2-adrenergic receptors expressed in fibroblasts. J. Biol. Chem. 268: 22235–22238, 1993.

    PubMed  CAS  Google Scholar 

  2. Aledo, J. C., F. Darakhshan, and H. S. Hundal. Rab4, but not the transferrin receptor, is colocalized with GLUT4 in an insulin-sensitive intracellular compartment in rat skeletal muscle. Biochem. Biophys. Res. Comm. 215: 321–328, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Aledo, J. C., E. Hajduch, F. Darakhshan, and H. S. Hundal. Analyses of the co-localization of cellubrevin and the GLUT4 glucose transporter in rat and human insulin-responsive tissues. FEBS Lett. 395: 211–216, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson, N. G. Growth hormone activates mitogen-activated protein kinase and S6 kinase and promotes intracellular tyrosine phosphorylation in 3T3-F442A preadipocytes. Biochem. J. 284: 649–652, 1992.

    PubMed  CAS  Google Scholar 

  5. Aronson, D., M. A. Violan, D. Dufresne, D. Zangen, R. A. Fielding, and L. J. Goodyear. Exercise stimulates the mitogen-activated protein kinase signaling pathways in rat skeletal muscle. J. Clin. Invest. 99: 1251–1257, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Backer, J. M., G. G. Schroeder, C. R. Kahn, M. G. Myers, P. A. Wilden, D. A. Cahil, and M. F. White. Insulin receptor stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J. Biol. Chem. 267: 1367–1374, 1992.

    PubMed  CAS  Google Scholar 

  7. Cain, C. C., W. S. Trimble, and G. E. Lienhard. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J. Biol. Chem. 261: 11681–11684, 1992.

    Google Scholar 

  8. Campbell, G. S., L. Pang, S. Miyatake, A. R. Saltiel, and C. Carter-Su. Stimulation by growth hormone of MAP kinase activity in 3T3-L1F442A fibroblasts. J. Biol. Chem. 267: 6074–6080, 1992.

    PubMed  CAS  Google Scholar 

  9. Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. Phophatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14: 4902–4911, 1994.

    PubMed  CAS  Google Scholar 

  10. Chen, K. S., J. C. Friel, and N. B. Ruderman. Regulation of phosphatidylinositol 3-kinase by insulin in rat skeletal muscle. Am. J. Physiol. (Endocrinol Metab. 28) 265: E736–E742, 1993.

    CAS  Google Scholar 

  11. Coderre, L., K. V. Kandror, G. Vallega, and P. F. Pilch. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J. Biol. Chem. 46: 27584–27588, 1995.

    Google Scholar 

  12. Cormont, M., J. Tanti, T. Gremeaux, E. Obberghen, and Y. Marchand-Brustel. Subcellular distribution of low molecular weight guanosine triphosphate-binding proteins in adipocytes: Colocalization with the glucose transporter GLUT4. Endocrinology. 129: 3343–3350, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Del Vecchio, R. L. and P. F. Pilch. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT4)-containing vesicles. J. Biol. Chem. 266: 13278–13283, 1991.

    PubMed  CAS  Google Scholar 

  14. Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. Activation of mitogen-activated protein kinase kinase in NIH 3T3 cells and in vivo. Science 257: 1404–1407, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Douen, A., T. Ramlal, S. Rastogi, P. Bilan, G. Cartee, M. Vranic, J. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin-responsive glucose transporter”. J. Biol. Chem. 265: 13427–13430, 1990.

    PubMed  CAS  Google Scholar 

  16. Elmendorf, J. S., A. Damrau-Abney, T. R. Smith, T. S. David, and J. Turinsky. Insulin-stimulated phosphatidyl 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles. Biochem. Biophys. Res. Comm. 208: 1147–1153, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Folli, F. F., M. J. A. Saad, J. M. Backer, and C. R. Kahn. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J. Clin. Invest. 92: 1787–1794, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Goodyear, L. J., P. Chang, D. J. Sherwood, S. D. Dufresne, and D. E. Moller. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am. J. Physiol. 271: E403–E408, 1996.

    PubMed  CAS  Google Scholar 

  19. Goodyear, L. J., F. Giogino, T. W. Balon, G. Condorelli, and R. J. Smith. Effects of contractile activity on tyrosine phophoproteins and PI 3-kinase activity in rat skeletal muscle. Am. J. Physiol. (Endocrinol. Metab. 31) 268: E987–E995, 1995.

    CAS  Google Scholar 

  20. Hanpeter, D. and D. E. James. Characterization of the intracellular GLUT4-compartment. Mol. Membr. Biol. 12: 263–269, 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi, T., D. Dufresen, M. F. Hirshman, and L. J. Goodyear. Contraction in vitro stimulates mitogen-activated protein kinase (MAPK) signaling in rat skeletal muscle. Diabetes 46: 385A, 1997.

    Google Scholar 

  22. Hayashi, T., J. F. Wojtaszewski, and L. J. Goodyear. Exercise regulation of glucose transport in skeletal muscle. Am. J. Physiol. (Endocrinol. Metab. 36) 273: E1039–E1051, 1997.

    CAS  Google Scholar 

  23. Heller-Harrison, R. A., M. Morin, A. Guilherme, and M. P. Czech. Insulin-mediated targeting of phosphatidylinositol 3-kinase to GLUT4 containing-vesicles. J. Biol. Chem. 271: 10200–10204, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Herbst, J. J., S. A. Ross, H. M. Scott, S. A. Bobin, N. J. Morris, G. E. Lienhard, and S. R. Keller. Insulin stimulates cell surface aminopeptidase activity toward Vasopressin in adipocytes. Am. J. Physiol. (Endocrinol. Metab. 35) 272: E600–E606, 1997.

    CAS  Google Scholar 

  25. Holman, G. D., L. L. Leggio, and S. W. Cushman. Insulin-stimulated GLUT4 glucose transporter recycling. J. Biol. Chem. 269: 17516–17524, 1994.

    PubMed  CAS  Google Scholar 

  26. Kandror, K. and P. F. Pilch. Identification and isolation of glycoproteins that translocate to the cell membrane from GLUT4-enriched vesicles in an insulin-dependent fashion. J. Biol. Chem. 269: 138–142, 1994.

    PubMed  CAS  Google Scholar 

  27. Kandror, K. V., L. Coderre, A. V. Pushkin, and P. F. Pilch. Comparison of glucose-transporter-containing vesicles from rat fat and muscle tissues: evidence for a unique endosomal compartment. Biochem. J. 307: 383–390, 1995.

    PubMed  CAS  Google Scholar 

  28. Kandror, K. V. and P. Pilch. Compartmentalization of protein traffic in insulin-sensitive cells. Am. J. Physiol. (Endocrinol. Metab. 34) 271: E1–E14, 1996.

    CAS  Google Scholar 

  29. Kandror, K. V. and P. F. Pilch. Gp 160, a tissue-specific marker for insulin-activated glucose transport. Proc. Natl. Acad. Sci. 91: 8017–8021, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Kandror, K. V. and P. F. Pilch. The insulin-like growth factor II/Mannose 6-phosphate receptor utilizes the same compartments as GLUT4 for insulin-dependent trafficking to and from the rat adipocyte cell surface. J. Biol. Chem. 271: 21703–21708, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Kelly, K. L. and N. B. Ruderman. Insulin-stimulated phosphatidylinositol 3-kinase. J. Biol. Chem. 268: 4391–4398, 1993.

    PubMed  CAS  Google Scholar 

  32. Kelly, K. L., N. B. Ruderman, and K. S. Chen. Phosphatidylinositol-3-kinase in isolated rat adipocytes. J. Biol. Chem. 267: 3423–3428, 1992.

    PubMed  CAS  Google Scholar 

  33. Klip, A., A. Volchuk, and T. Tsakiridis. The glucose transporters of skeletal muscle. Cell Develop. Biol. 7: 229–237, 1996.

    Article  CAS  Google Scholar 

  34. Kotani, K., A. J. Carozzi, H. Sakaue, K. Hara, L. J. Robinson, S. F. Clark, K. Yonezawa, D. E. James, and M. Kasuga. Requirements for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-11 adipocytes. Biochem. Biophys. Res. Comm. 209: 343–348, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Kyriakis, J. M., H. App, X. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. Raf-1 activates MAP kinase kinase. Nature Lond. 358: 417–421, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dal, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. The stress-activated protein kinase subfamily of c-jun kinases. Nature Lond. 369: 156–160, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Laurie, S. M., C. C. Cain, G. E. Lienhard, and J. D. Castle. The glucose transporter GLUT4and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytesand partally segregate during insulin stimulation. J. Biol. Chem. 268: 19110–19117, 1993.

    PubMed  CAS  Google Scholar 

  38. Lavan, B. E., W. S. Lane, and G. E. Lienhard. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 11439–11443, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Lee, A. D., P. A. Hansen, and J. O. Holloszy. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 361: 51–54, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Lin, B. Z., P. F. Pilch, and K. V. Kandror. Sortilin is a major protein component of GLUT4 contaning-vesicles. J. Biol. Chem. 272: 24145–24150, 1997.

    Article  PubMed  CAS  Google Scholar 

  41. Livingstone, C., D. E. James, J. E. Rice, D. Hanpeter, and G. W. Gould. Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochem. J. 315: 487–495, 1996.

    PubMed  CAS  Google Scholar 

  42. Malide, D. and S. W. Cushman. Morphological effects of wortmannin on the endosomal system and GLUT4-containing compartments in rat adipose cells. J. Cell Sci. 110: 2795–2806, 1997.

    PubMed  CAS  Google Scholar 

  43. Malide, D., N. K. Dwyer, E. J. Mackie-Blanchette, and S. W. Cushman. Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP2-positive compartment in rat adipose cells in the absence of insulin. J. Histochem. Cytochem. 45: 1083–1096, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Malide, D., J. St-Denis, S. R. Keller, and S. W. Cushman. Vp165 and GLUT4 share similar vesicle pools along their trafficking pathways in rat adipose cells. FEBS Letters 409: 461–468, 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Mastick, C., R. Aebersold, and G. Lienhard. Characterization of a major protein in GLUT4 vesicles: Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane. J. Biol. Chem. 269: 6089–6092, 1994.

    PubMed  CAS  Google Scholar 

  46. Miasaka, T., M. V. Chao, P. Sherline, and A. R. Saltiel. Nerve growth factor stimulates a protein kinase in PC-12 cells that phosphorylates microtubule-associated protein-2. J. Biol Chem. 265: 4730–4735, 1990.

    Google Scholar 

  47. Moodie, S. A., B. M. Willumsen, M. J. Weber, and A. Wolfman. Complexes of Ras GTP with raf-1 and Mitogen kinases-activated protein kinase kinase. Science 260: 1658–1661, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Morris, N. J., A. Ducret, R. Aebersold, S. A. Ross, S. R. Keller, and G. E. Lienhard. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J. Biol. Chem. 272: 9388–9392, 1997.

    Article  PubMed  CAS  Google Scholar 

  49. Pawson, T. Protein modules and signalling networks. Nature Lond. 16: 573–579, 1995.

    Article  Google Scholar 

  50. Payne, D. M., A. J. Rossomando, P. Martino, A. K. Erickson, J. H. Her, J. Shabanowitz, D. F. Hunt, M. J. Weber, and T. W. Sturgill. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBOJ. 10: 885–892, 1991.

    CAS  Google Scholar 

  51. Quon, M. J., A. J. Butte, M. J. Zarnowski, G. Sesti, S. W. Cushman, and S. I. Taylor. Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J. Biol. Chem. 269: 27920–27924, 1994.

    PubMed  CAS  Google Scholar 

  52. Rodnick, K., J. Slot, D. Studelska, D. Hanpeter, L. Robinson, H. Geuze, and D. James. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J. Biol. Chem. 6278-6285, 1992.

    Google Scholar 

  53. Ruderman, N. B., R. Kapeller, M. F. White, and L. C. Cantley. Activation of a phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. 87: 1411–1415, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Satoh, S., H. Nishimura, A. E. Clark, I. J. Kozka, S. J. Vannucci, I. A. Simpson, M. J. Quon, S. W. Cushman, and G. D. Holman. Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. J. Biol. Chem. 268: 17821–17829, 1993.

    Google Scholar 

  55. Shisheva, A., J. Buxton, and M. P. Czech. Differential intracelullar localizations of GDP dissociation inhibitor isoforms. J. Biol. Chem. 269: 23865–23868, 1997.

    Google Scholar 

  56. Shoelson, S. E., S. Chatterjee, M. Chaudhuri, and M. F. White. YMXM motifs of IRS-1 define substrate specifity of the insulin receptor kinase. Proc. Natl. Acad. Sci. 89: 2027–2031, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Slot, J. W., H. J. Geuze, S. Gigenback, G. E. Lienhard, and D. E. James. Immunolocalization of the insulinregulatable glucose transporter (GLUT4) in brown adipose tissue of the rat. J. Cell Biol. 113: 123–135, 1991.

    Article  PubMed  CAS  Google Scholar 

  58. Stephens, J. M. and P. F. Pilch. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr. Rev. 16: 529–546, 1995.

    PubMed  CAS  Google Scholar 

  59. Sturgill, T. W., L. B. Ray, E. Erikson, and J. L. Mailer. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein kinase S6 kinase II. Nature Lond. 334: 715–718, 1988.

    Article  PubMed  CAS  Google Scholar 

  60. Sumitani, S., T. Tsakiridis, A. Volchuk, and A. Klip. Insulin induces translocation of intracellular vesicleassociated membrane proteins-2 (VAMP-2) in muscle cells; mediation by phosphatidylinositol 3-kinase (PI3K). J. Gen. Physiol. 105: 43A, 1995.

    Google Scholar 

  61. Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahili, B. J. Goldstein, and M. F. White. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature Lond. 352: 73–77, 1991.

    Article  PubMed  CAS  Google Scholar 

  62. Sun, X. J., L. Wang, Y. Zhang, L. Yenush, M. G. Myers, E. Giasheen, W. S. Lane, J. H. Pierce, and M. F. White. Role of IRS-2 in insulin and cytokine signalling. Nature Lond. 377: 173–177, 1995.

    Article  PubMed  CAS  Google Scholar 

  63. Tanner, L. I. and G. E. Lienhard. Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters. J. Cell Biol. 108: 1537–1545, 1989.

    Article  PubMed  CAS  Google Scholar 

  64. Tanti, J., T. Gremeaux, S. Grillo, V. Calleja, A. Klippel, L. T. Williams, E. Obberghen, and Y. Marchand-Brustel. Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote GLUT4 translocation in adipocytes. J. Biol. Chem. 271: 25227–25232, 1996.

    Article  PubMed  CAS  Google Scholar 

  65. Thoidis, G., N. Kotliar, and P. F. Pilch. Immunological analysis of GLUT4-enriched vesicles. J. Biol. Chem. 268: 11691–11696, 1993.

    PubMed  CAS  Google Scholar 

  66. Till, M., I. Uphues, and J. Eckel. Contraction-stimulated glucose transport in rat cardiac muscle is mediated via PI 3-kinase: evidence for a specific function of IRS-2. Diabetes 46: 1056, 1997.

    Google Scholar 

  67. Tsakiridis, T., M. Vranic, and A. Klip. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J. Biol. Chem. 47: 29934–29942, 1994.

    Google Scholar 

  68. Volchuk, A., R. Sargeant, S. Sumitani, Z. Liu, L. He, and A. Klip. Cellubrevin is a resident protein of insulin-sensitive GLUT4 glucose transporter vesicles in 3T3-L1 adipocytes. J. Biol. Chem. 270: 8233–8240, 1995.

    Article  PubMed  CAS  Google Scholar 

  69. Volchuk, A., Q. Wang, H. S. Ewart, Z. Liu, L. He, M. K. Bennett, and A. Klip. Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport. Mol. Biol. Cell 7: 1075–1082, 1996.

    PubMed  CAS  Google Scholar 

  70. White, M. F. and C. R. Kahn. The insulin signaling system. J. Biol. Chem. 269: 1–4, 1994.

    PubMed  CAS  Google Scholar 

  71. Winitz, S., M. Russlel, N. Qian, A. Gardner, L. Dwyer, and G. L. Johnson. Involvement of rasand raf in the Gi-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein (MAP) kinase kinaseand MAP kinase. J. Biol. Chem. 268: 19196–19199, 1993.

    PubMed  CAS  Google Scholar 

  72. Wojtaszewski, J. F., B. F. Hansen, B. Urso, and E. A. Richter. Wortmannin inhibits both insulin-and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J. Appl. Physiol. 81: 1501–1509, 1996.

    PubMed  CAS  Google Scholar 

  73. Yeh, J., E. A. Gulve, L. Rameh, and M. J. Birnbaum. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling parthways for insulin-and contraction-activated hexose transport. J. Biol. Chem. 270: 2107–2111, 1995.

    Article  PubMed  CAS  Google Scholar 

  74. Zhou, Q. and G. L. Dohm. Treadmill running increases phosphatidyl 3-kinase activity in rat skeletal muscle. Biochem. Biophys. Res. Comm. 236: 647–650, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cushman, S.W. et al. (1998). Molecular Mechanisms Involved in GLUT4 Translocation in Muscle during Insulin and Contraction Stimulation. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics