Skip to main content
Log in

Sex- and age-related composition of 10 617 calculi analyzed by infrared spectroscopy

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

A series of 10 617 calculi were analyzed by stereomicroscopy and infrared spectroscopy. This first study of French calculi was compared with large series in the literature. That the frequency of pure calculi was the lowest ever observed can be related to the methodology routinely used in our laboratory, which includes microsampling. We described more than 70 components among the 10 617 calculi. The overall sex ratio male to female patients was high (2.27) and increased over the period 1981–1993. Calcium oxalate was the most frequent component (86.48%), followed by calcium phosphate (79.75%) and purines (18.64%). We found a low occurrence of “infection” stones. The sex ratio was related to stone composition and differed according to the main component. For instance, calcium oxalate dihydrate (COD) was more frequent in men than in women, with a sex ratio of 4.97 versus 2.57 for calcium oxalate monohydrate (COM). On the contrary, calcium phosphate was more frequent in female patients (sex ratio 0.72 versus overall ratio). The high frequency of COD calculi (23.17%) suggests that hypercalciuria is particularly frequent in French patients susceptible to stone formation. For each main component, a specific profile was observed in relation to the sex and age of the patients with stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen DA (1969) Historical and geographical differences in the pattern of incidence of urinary stones considered in relation to possible aetiological factors. In: Hodgkinson A, Nordin BEC (eds) Renal stone research symposium, Leeds 1968. Churchill, London, p 7

    Google Scholar 

  2. Asper R (1984) Epidemiology and socioeconomic aspects of urolithiasis. Urol Res 12:1

    Google Scholar 

  3. Berthelot M, Cornu G, Daudon M, Helbert M, Laurence C (1987) Diffuse reflectance technique for infrared analysis of urinary calculi. Clin Chem 33:780.

    Google Scholar 

  4. Brien G, Schubert G, Bick C (1982) 10000 analyses of urinary calculi using X-ray diffraction and polarizing microscopy. Eur Urol 8:251

    Google Scholar 

  5. Conte A, Genestar C, Grases F (1990) Relation between calcium oxalate hydrate form found in renal calculi and some urinary parameters. Urol Int 45:25

    Google Scholar 

  6. Daudon M, Bader CA, Jungers P (1993) Urinary calculi: review of classification methods and correlations with etiology. Scanning Microsc 7:1081

    Google Scholar 

  7. Daudon M, Protat MF, Reveillaud RJ (1978) Analyse des calculs par spectrophotométrie infrarouge: avantages et limites de la méthode. Ann Biol Clin (Paris) 36:475

    Google Scholar 

  8. Daudon M, Protat MF, Reveillaud RJ (1983) Dépistage et diagnostic des lithiases médicamenteuses. Ann Biol Clin (Paris) 41:239.

    Google Scholar 

  9. Daudon M, Protat MF, Reveillaud RJ, Jaeschke-Boyer H (1983) Infrared spectrometry and Raman microprobe in the analysis of urinary calculi. Kidney Int 23:842

    Google Scholar 

  10. Daudon M, Reveillaud RJ (1984) Whewellite et weddellite: vers des étiopathogénies différentes. Intérêt du typage morphologique des calculs. Néphrologie 5:195

    Google Scholar 

  11. Farmer VC (1974) The infrared spectra of minerals, vol 1. Mineralogical Society, London

    Google Scholar 

  12. Gault MH, Campbell NRC, Aksu AE (1988) Spurious stones. Nephron 48:274

    Google Scholar 

  13. Herring LC (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:1177

    Google Scholar 

  14. Hesse A, Sanders G (1988) Atlas of infrared spectra for the analysis of urinary concrements, vol 1. Thieme, Stuttgart

    Google Scholar 

  15. Hesse A, Schneider HJ (1976) Results of the standardization and centralization of stone analysis in the German Democratic Republic. In: Fleish H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum, New York, p 295

    Google Scholar 

  16. Jaeger P, Portmann L, Ginalski JM, Burckhardt P (1988) L'hypercalciurie idiopathique dite “rénale” a le plus souvent une origine diététique. Schweiz Med Wochenschr 18:15

    Google Scholar 

  17. Johnson CM, Wilson DM, O'Fallon WM, Malek RS, Kurland LT (1979) Renal stone epidemiology: a 25 year study in Rochester, Minnesota. Kidney Int 16:624

    Google Scholar 

  18. Jungers P (1989) Epidémiologie de la lithiase urinaire. In: Jungers P, Daudon M, Le Duc A (eds) Lithiase urinaire. Médecine-Sciences Flammarion, Paris, p 1

    Google Scholar 

  19. Koide T, Oka T, Takaha M, Sonoda T (1986) Urinary tract stone disease in modern Japan. Stone incidence, composition and possible causes in Osaka district. Eur Urol 12:403

    Google Scholar 

  20. Lemann J Jr, Adam ND, Gray RW (1979) Urinary calcium excretion in human beings. N Engl J Med 301:535

    Google Scholar 

  21. Leusmann DB, Blaschke R, Schmandt W (1990) Ten years of urinary stone laboratory Münster: results of 5035 stone analyses. In: Proceedings of the First European Symposium on Urolithiasis, Bonn, Excerpta Medica, Amsterdam, p 3

    Google Scholar 

  22. Leusmann DB, Blaschke R, Schmandt W (1990) Results of 5035 stone analysis: a contribution to epidemiology stone disease, Scand J Urol Nephrol 24:205

    Google Scholar 

  23. Ljunghall S (1985) Incidence of renal stones in western countries. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis and related clinical research. Plenum, New York, p 31

    Google Scholar 

  24. Murphy BT, Pyrah LN (1962) The composition, structure and mechanism of the formation of urinary calculi. Br J Urol 34:129

    Google Scholar 

  25. Prien EL (1963) Crystallographic analysis of urinary calculi. A 23 year survey study. J Urol 89:917

    Google Scholar 

  26. Robertson WG (1985) Dietary factors important in calcium stone formation. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis and related clinical research. Plenum, New York, p 61

    Google Scholar 

  27. Robertson WG, Heyburn PJ, Peacock M, Hanes F, Swaminathan R (1979) The effect of a high animal protein intake on the risk of calcium oxalate stone in the urinary tract. Clin Sci 57:285

    Google Scholar 

  28. Robertson WG, Peacock M (1982) The pattern of urinary stone disease in Leeds and in the United Kingdom in relation to animal protein intake during the period 1960–80. Urol Int 37:394

    Google Scholar 

  29. Robertson WG, Peacock M, Heyburn PJ (1980) Clinical and metabolic aspects of urinary stone disease in Leeds. Scand J Urol [Suppl] 53:199

    Google Scholar 

  30. Schmucki O, Asper R (1986) Clinical significance of stone analysis. Urol Int 41:343

    Google Scholar 

  31. Schneider HJ, Berg C (1981) Epidemiologische aussagen zum harsteinleiden auf der grundlage von 100 000 harnsteinanalysen. Unter besonderer berücksichtigung der rezidive. Fortschr Urol Nephrol 17:34

    Google Scholar 

  32. Scott R, Freeland R, Mowat W, Gardiner M, Hawthorne V, Marshall RM, Ives JGJ (1977) The prevalence of calcified upper urinary tract stone disease in a random population survey: Cumbernauld health survey. Br J Urol 49:589

    Google Scholar 

  33. Simon P, Ang KS, Cam G, Cloup C, Carlier M, Mignard JP, Bavay P (1986) Epidémiologie de la lithiase calcique dans une région française: premiers résultats à 4 ans. Presse Med 15:1665

    Google Scholar 

  34. Tiselius HG, Almgard LE, Larsson L, Sörbo B (1978) A biochemical basis for grouping of patients with urolithiasis. Eur Urol 4:241

    Google Scholar 

  35. Vahlensieck W, Bach D, Hesse A (1982) Incidence, prevalence and mortality of urolithiasis in the German Federal Republic. Urol Res 10:161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daudon, M., Hennequin, C., Lacour, B. et al. Sex- and age-related composition of 10 617 calculi analyzed by infrared spectroscopy. Urol. Res. 23, 319–326 (1995). https://doi.org/10.1007/BF00300021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300021

Key words

Navigation