Skip to main content
Log in

P53, cell cycle control and apoptosis: Implications for cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

Cellular proliferation depends on the rates of both cell division and cell death. Tumors frequently have decreased cell death as a primary mode of increased cell proliferation. Genetic changes resulting in loss of programmed cell death (apoptosis) are likely to be critical components of tumorigenesis. Many of the gene products which appear to control apoptotic tendencies are regulators of cell cycle progression; thus, cell cycle control and cell death appear to be tightly linked processes. P53 protein is an example of a gene product which affects both cell cycle progression and apoptosis. The ability of p53 overexpression to induce apoptosis may be a major reason why tumor cells frequently disable p53 during the transformation process. Unfortunately, the same genetic changes which cause loss of apoptosis during tumordevelopment, may also result in tumor cellresistance to anti-neoplastic therapies which kill tumor cells by apoptosis. Elucidation of the genetic and biochemical controls of these cellular responses may provide insights into ways to induce cell death and thus hopefully suggest new targets for improving therapeutic index in the treatment of malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wyllie AH: Apoptosis (The 1992 Frank Rose Memorial Lecture). Br J Cancer 67: 205–208, 1993

    Google Scholar 

  2. Bakhshi A, Jensen JP, Goldman P, Wright JJ, Mcbride OW, Epstein AL, Korsmeyer SJ: Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 14: 889–906, 1985

    Google Scholar 

  3. Sentman CL, Shutter JR, Hockenbery D, Knagawa O, Korsmeyer SJ: bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67: 879–888, 1991

    Google Scholar 

  4. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterdimerizesin vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 74: 609–619, 1993

    Google Scholar 

  5. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB: bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608, 1993

    Google Scholar 

  6. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW: Mcl-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc Natl Acad Sci USA 90: 3516–3520, 1993

    Google Scholar 

  7. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-6. Nature 352: 345–347, 1991

    Google Scholar 

  8. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T: p53-dependent apoptosis suppresses tumor growth and progressionin vivo. Cell 78: 703–711, 1994

    Google Scholar 

  9. Morgenbesser SD, Williams BO, Jacks T, DePinho RA: p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371: 72–74, 1994

    Google Scholar 

  10. Pan H, Griep AE: Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor suppressor gene function in development. Genes & Development 8: 1285–1299, 1994

    Google Scholar 

  11. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Water CM, Penn LZ, Hancock DC: Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128, 1992

    Google Scholar 

  12. Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R: Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 91: 3754–3758, 1994

    Google Scholar 

  13. Shi L, Nishioka WK, Th'ng J, Bradbury EM, Litchfield DW, Greenberg AH: Premature p34cdc2 activation required for apoptosis. Science 263: 1143–1145, 1994

    Google Scholar 

  14. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ: Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83: 2038–2044, 1994

    Google Scholar 

  15. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG:BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83: 1179–1187, 1994

    Google Scholar 

  16. Milner AE, Grand RJA, Waters CM, Gregory CD: Apoptosis in Burkitt lymphoma cell is driven by c-myc. Oncogene 8: 3385–3391, 1993

    Google Scholar 

  17. Wyllie AH, Rose KA, Morris RG, Steel CM, Foster E, Spandidos DA: Rodent fibroblast tumours expressing humanmyc andras genes: growth, metastasis and endogenous oncogene expression. Br J Cancer 56: 251–259, 1987

    Google Scholar 

  18. Debbas M, White E: Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes & Development 7: 546–554, 1993

    Google Scholar 

  19. Lowe SW, Ruley HE: Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes & Development 7: 535–545, 1993

    Google Scholar 

  20. White AE, Livanos EM, Tlsty TD: Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes & Dev 8: 666–677, 1994

    Google Scholar 

  21. Wu X, Levine AJ: p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606, 1991

    Google Scholar 

  22. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA: Effects of an Rb mutation in the mouse. Nature 359: 295–300, 1992

    Google Scholar 

  23. Clarke AR, Maandag ER, van Roon M, van der Lugt NMT, van der Valk M, Hooper ML, Berns A, te Riele H: Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330, 1992

    Google Scholar 

  24. Lee EYP, Chang C, Hu N, Wang YJ, Lai C, Herrup K, Lee W, Bradley A: Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294, 1992

    Google Scholar 

  25. Lane DP, Crawford LV: T antigen is bound to host protein in SV40 transformed cells. Nature 278: 261–263, 1979

    Google Scholar 

  26. Linzer DI, Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52, 1979

    Google Scholar 

  27. Deleo AB, Jay G, Appells E, Dubois GC, Law LW, Old LJ: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76: 2420–2424, 1979

    Google Scholar 

  28. Crawford L: The 53,000-dalton cellular protein and its role in transformation. Int Rev Exp Pathol 25: 1–50, 1983

    Google Scholar 

  29. Eliyahu D, Raz A, Gruss P, Givol D, Oren M: Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature (London) 312: 646–649, 1984

    Google Scholar 

  30. Hinds PW, Finlay CA, Levine AJ: Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63: 739–746, 1989

    Google Scholar 

  31. Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M, Bressac B, Ozturk M, Baker SJ, Vogelstein B, Friend SH: p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10: 5772–5781, 1990

    Google Scholar 

  32. Baker SJ, Markowitz S, Fearon ER, Willson JKV, Vogelstein B: Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915, 1990

    Google Scholar 

  33. Martinez J, Goergoff I, Levine AJ: Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 5: 151–159, 1991

    Google Scholar 

  34. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 muttions in human cancers. Science 253: 49–53, 1991

    Google Scholar 

  35. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708, 1989

    Google Scholar 

  36. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD: p53: a frequent target for genetic abnormalities in lung cancer. Science 246: 491–494, 1989

    Google Scholar 

  37. Harris CC: p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 262: 1980–1981, 1993

    Google Scholar 

  38. Malkin D, Li FP, Strong LC, Fraumeni JF, Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FA, Tainsky MA, Friend SH: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238, 1990

    Google Scholar 

  39. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH: Germ-line transmission of a mutated p53 gene in a cancerprone family with Li-Fraumeni syndrome. Nature 348: 747–749, 1990

    Google Scholar 

  40. Fields S, Jang SK: Prsence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1049, 1990

    Google Scholar 

  41. Raycroft L, Wu HY, Lozano G: Transcriptional activation by wild-type but not transforming mutants of the p53 antioncogene. Science 249: 1049–1051, 1990

    Google Scholar 

  42. Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C: Wild-type p53 activates transcriptionin vitro. Nature 358: 83–86, 1992

    Google Scholar 

  43. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083–1091, 1991

    Google Scholar 

  44. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B: Identification of p53 as a sequence-specific DNA-binding protein. Science 252: 1708–1711, 1991

    Google Scholar 

  45. El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B: Definition of a consensus binding site for p53. Nature 356: 215–221, 1992

    Google Scholar 

  46. Funk WD, Pak DT, Karas RH, Wright WE, Shay JW: A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12: 2866–2871, 1992

    Google Scholar 

  47. Kern SE, Kinzler KW, Baker SJ, Nigro JM, Rotter V, Levine AJ, Friedman P, Prives C, Vogelstein B: Mutant p53 proteins bind DNA abnormallyin vitro. Oncogene 6: 131–136, 1991

    Google Scholar 

  48. Unger T, Nau MM, Segal S, Minna JD: p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J 11: 1383–1390, 1992

    Google Scholar 

  49. Cho Y, Gorina S, Jeffery PD, Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 265: 346–355, 1994

    Google Scholar 

  50. Kern SE, Pietenpol JA, Thiagalingam S, Seymor A, Kinzler KW, Vogelstein B: Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827–830, 1992

    Google Scholar 

  51. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB: Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci 89: 7491–7495, 1992

    Google Scholar 

  52. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ: Gain of function mutations in p53. Nat Genet 4: 42–46, 1993

    Google Scholar 

  53. Michalovitz D, Halevy O, Oren M: p53 mutations: gains or losses? J Cell Biochem 45: 22–29, 1991

    Google Scholar 

  54. Barak Y, Oren M: Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO 11: 2115–2121, 1992

    Google Scholar 

  55. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B: Oncoprotein mdm2 conceals the activation domain of tumor suppressor p53. Nature 362: 857–860, 1993

    Google Scholar 

  56. Finlay CA: The mdm2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol 13: 301–306, 1993

    Google Scholar 

  57. Momand J, Zambetti GP, Olson DC, George DL, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245, 1992

    Google Scholar 

  58. Zauberman A, Barak Y, Ragimov N, Levy N, Oren M: Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53 - MDM2 complexes. EMBO J 12: 2799–2808, 1993

    Google Scholar 

  59. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739, 1993

    Google Scholar 

  60. Leach FS, Tokins T, Meltzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B: p53 mutation and mdm2 amplification in human soft tissue sarcomas. Cancer Res 53: 2231–2234, 1993

    Google Scholar 

  61. Oliner JD, Kinzler KW, Meltzer P, George DL, Vogelstein B: Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83, 1992

    Google Scholar 

  62. Sheikh MS, Shao ZM, Hussain A, Fontana JA: The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Res 53: 3226–3228, 1993

    Google Scholar 

  63. Levine AJ, Momand J, Finlay CA: The p53 tumour suppressor gene. Nature 351: 453–456, 1991

    Google Scholar 

  64. Vogelstein B, Kinzler KW: p53 function and dysfunction. Cell 70: 523–526, 1992

    Google Scholar 

  65. Doll R, Peto R: The causes of cancer in the United States today. J Natl Cancer Inst 66: 1192–1308, 1981

    Google Scholar 

  66. Busse PM, Bose SK, Jones RW, Tolmach LJ: The action of caffeine on X-irradiated HeLa cells. II. Synergistic lethality. Radiat Res 71: 666–677, 1977

    Google Scholar 

  67. Denekamp J: Cell kinetics and radiation biology. Int J Radiat Biol 49: 357–380, 1986

    Google Scholar 

  68. Weinert TA, Hartwell LH: The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322, 1988

    Google Scholar 

  69. Little JB: Delayed initiation of DNA synthesis in irradiated human diploid cells. Nature 218: 1064–1065, 1968

    Google Scholar 

  70. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    Google Scholar 

  71. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ, Jr: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597, 1992

    Google Scholar 

  72. Hartwell LH, Weinert TA: Checkpoints: Controls that ensure the order of cell cycle events. Science 246: 629–634, 1989

    Google Scholar 

  73. Nelson WG, Kastan MB: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14: 1815–1823, 1994

    Google Scholar 

  74. Zhan Q, Bae I, Kastan MB, Fornace AJ, Jr: The p53-dependent gamma-Ray response of GADD45. Cancer Res 54: 2755–2760, 1994

    Google Scholar 

  75. Khanna KK, Lavin MF: Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8: 3307–3312, 1993

    Google Scholar 

  76. Price BD, Park SJ: DNA damage increases the levels of MDM2 messenger RNA in wtp53 human cells. Cancer Res 54: 896–899, 1994

    Google Scholar 

  77. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper W, Elledge SJ, Reed SI: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023, 1994

    Google Scholar 

  78. Canman CE, Wolff AC, Chen C, Fornace AJ, Kastan MB: The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res 54: 5054–5058, 1994

    Google Scholar 

  79. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 76: 817–825, 1993

    Google Scholar 

  80. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816, 1993

    Google Scholar 

  81. Xiong Y, Hannon GH, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704, 1993

    Google Scholar 

  82. Xiong Y, Zhang H, Beach D: Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7: 1572–1583, 1993

    Google Scholar 

  83. Noda A, Ning Y, Venable SF, Perreira-Smith OM, Smith JR: Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98, 1994

    Google Scholar 

  84. Slebos RJC, Lee MH, Plunkett BS, Kessis TD, Williams BO, Jacks T, Hedrick L, Kastan MB, Cho KR: p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci USA 91: 5320–5324, 1994

    Google Scholar 

  85. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174, 1994

    Google Scholar 

  86. Lin BT, Gruenwald S, Morla AO, Lee WH, Wang JY: Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J 10: 857–864, 1991

    Google Scholar 

  87. Nevins JR: E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429, 1992

    Google Scholar 

  88. Weintraub SJ, Prater CA, Dean DC: Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261, 1992

    Google Scholar 

  89. Arroyo M, Raychaudhuri P: Retinoblastoma-repression of E2F-dependent transcription depends on the ability of the retinoblastoma protein to interact with E2F and is abrogated by the adenovirus E1A oncoprotein. Nucleic Acids Res 20: 5947–5954, 1992

    Google Scholar 

  90. Zhan Q, Carrier F, Fornace AJ, Jr: Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Molecular and cellular biology 13: 4242–4250, 1993

    Google Scholar 

  91. Zhan Q, Lord KA, Alamo I, Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ, Jr: Thegadd andMyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14: 2361–2371, 1994

    Google Scholar 

  92. Smith ML, Chen I, Bae I, Chen C, Gilmer T, Kastan MB, O'Connor PM, Fornace AJ: Physical and functional interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380, 1994

    Google Scholar 

  93. Chen C, Oliner JD, Zhan Q, Fornace AJ, Jr, Vogelstein B, Kastan MB: Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci USA 91: 2684–2688, 1994

    Google Scholar 

  94. Perry ME, Piette J, Zawadzki JA, Harvey D, Levine AJ: The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc Natl Acad Sci USA 90: 11623–11627, 1993

    Google Scholar 

  95. Barak Y, Juven T, Haffner R, Oren M: mdm2 expression is induced by wild type p53 activity. EMBO 12: 461–468, 1993

    Google Scholar 

  96. Juven T, Barak Y, Zauberman A, George DL, Oren M: Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8: 3411–3416, 1993

    Google Scholar 

  97. Wu X, Bayle H, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes and Develop 7: 1126–1132, 1993

    Google Scholar 

  98. Otto A, Deppert W: A tumor cells tolerating wild-type p53. Oncogene 8: 2591–2603, 1993

    Google Scholar 

  99. Sellins KS, Cohen JJ: Gene induction by -irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139: 3199–3206, 1987

    Google Scholar 

  100. Lowe SW, Schmitt SW, Smith SW, Osborne BA, Jacks T: p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849, 1993

    Google Scholar 

  101. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH: Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852, 1993

    Google Scholar 

  102. Lowe SW, Ruley HE, Jacks T, Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967, 1993

    Google Scholar 

  103. Lotem J, Sachs L: Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82: 1092–1096, 1993

    Google Scholar 

  104. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB: Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53: 4164–4168, 1993

    Google Scholar 

  105. Michalovitz D, Halevy O, Oren M: Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62: 671–680, 1990

    Google Scholar 

  106. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347, 1991

    Google Scholar 

  107. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1992

    Google Scholar 

  108. Carder P, Wyllie AH, Purdie CA, Morris RG, White S, Piris J, Bird CC: Stabilised p53 facilitates aneuploid clonal divergence in colorectal cancer. Oncogene 8: 1397–1401, 1993

    Google Scholar 

  109. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935, 1992

    Google Scholar 

  110. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM: Wild-type p53 restores cell cycle and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948, 1992

    Google Scholar 

  111. Schaefer DI, Livano EM, White AE, Tlsty TD: Multiple mechanisms of n-(phosphonoacetyl)-1-aspartate drug resistance in SV40-infected precrisis human fibroblasts. Cancer Res 53: 4946–4951, 1993

    Google Scholar 

  112. Blount PL, Meltzer SJ, Yin J, Huang Y, Krasna MJ, Reid BJ: Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci 90: 3221–3225, 1993

    Google Scholar 

  113. Reid BJ, Sanchez CA, Blount PA, Levine DS: Barrett's esophagus: cell cycle abnormalities in advancing stages of neoplastic progression. Gastroenterology 105: 119–129, 1993

    Google Scholar 

  114. Lowe SW, Jacks T, Housman DE, Ruley HE: Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 91: 2026–2030, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastan, M.B., Canman, C.E. & Leonard, C.J. P53, cell cycle control and apoptosis: Implications for cancer. Cancer Metast Rev 14, 3–15 (1995). https://doi.org/10.1007/BF00690207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690207

Key words

Navigation