Skip to main content
Log in

Parvalbumin, and intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells

  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Baron, G., Demaille, J., and Dutruge, E., The distribution of parvalbumins in muscle and in other tissues. FEBS Lett.56 (1975) 156–160.

    Google Scholar 

  2. Benzonana, G., Wnuk, W., Cox, J. A., and Gabbiani, G., Cellular distribution of sarcoplasmic calcium-binding proteins by immunofluorescence. Histochemistry51 (1977) 335–341.

    Google Scholar 

  3. Benzonana, G., and Gabbiani, G., Immunofluorescence subcellular localization of some muscle proteins: a comparison between tissue sections and isolated myofibrils. Histochemistry55 (1978) 61–76.

    Google Scholar 

  4. Berchtold, M. W., Celio, M. R., and Heizmann, C. W., Parvalbumin in non-muscle tissues of the rat. Quantitation and immuno-histochemical localization. J. biol. Chem.259 (1984) 5189–5196.

    Google Scholar 

  5. Berchtold, M. W., Wilson, K. J., and Heizmann, C. W., Isolation of neuronal parvalbumin by high-performance liquid chromatography. Characterization and comparison with muscle parvalbumin. Biochemistry21 (1982) 6552–6557.

    Google Scholar 

  6. Berchtold, M. W., Heizmann, C. W., and Wilson, K. J., Ca2+-binding proteins: a comparative study of their behavior during high-performance liquid chromatography using gradient elution on reverse-phase supports. Analyt. Biochem.129 (1983) 120–131.

    Google Scholar 

  7. Berchtold, M. W., Celio, M. W., and Heizmann, C. W., Parvalbumin in human brain. (1984) submitted.

  8. Berchtold, M. W., Heizmann, C. W., and Wilson, K. J., Primary structure of parvalbumin from rat skeletal muscle. Eur. J. Biochem.127 (1982) 381–389.

    Google Scholar 

  9. Blaustein, M. P., and Rasgado-Flores, H., The control of cytoplasmic free calcium in presynaptic nerve terminals, in: Calcium and Phosphate Transport across Biomembranes, pp. 53–58. Eds F. Bronner and M. Peterlik, Academic Press, New York 1981.

    Google Scholar 

  10. Blum, H. E., Lehky, P., Kohler, L., Stein, E. A., and Fischer, E. H., Comparative properties of vertebrate parvalbumin. J. biol. Chem.252 (1977) 2834–2838.

    Google Scholar 

  11. Blum, H. E., Pocingwong, S., and Fischer, E. H., Phosphorylation of a dogfish skeletal muscle protein related to parvalbumin, in: Metabolic Interconversion of Enzymes, pp. 197–208. Eds E. H. Fischer, E. G. Krebs, H. Neurath and E. R. Stadtman. Springer Verlag, Heidelberg/New York 1973.

    Google Scholar 

  12. Bock, E., Nervous system specific proteins. J. Neurochem.30 (1978) 7–15.

    Google Scholar 

  13. Bradshaw, R. A., and Schneider, D. M., eds, Proteins of the nervous system, Raven Press, New York (1980).

    Google Scholar 

  14. Briggs, N., Identification of the soluble relaxing factor as a parvalbumin. Fedn Proc.34 (1975) 540.

    Google Scholar 

  15. Buchtal, F., and Schmalbruch, H., Motor unit of mammalian muscle. Physiol. Rev.60 (1980) 90–142.

    Google Scholar 

  16. Capony, J.-P., Pina, C., and Pechère, J.-F., Parvalbumin from rabbit muscle. Isolation and primary structure. Eur. J. Biochem.70 (1976) 123–135.

    Google Scholar 

  17. Celio, M. R., and Heizmann, C. W., Calcium-binding protein parvalbumin as a neuronal marker. Nature, Lond.293 (1981) 300–302.

    Google Scholar 

  18. Celio, M. R., and Heizmann, C. W., Calcium-binding protein parvalbumin is associated with fast contracting muscle fibers. Nature, Lond.297 (1982) 504–506.

    Google Scholar 

  19. Celio, M. R., Norman, A. W., and Heizmann, C. W., Vitamin-D-dependent calcium-binding-protein and parvalbumin occur in bones and teeth. Calcified Tissue Int.36 (1984) 129–133.

    Google Scholar 

  20. Close, R. J., Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol., Lond.173 (1964) 74–95.

    Google Scholar 

  21. Cohen, P., The role of protein phosphorylation in neuronal and hormonal control of cellular activity. Nature, Lond.296 (1982) 613–620.

    Google Scholar 

  22. DeLorenzo, F. J., Calmodulin in synaptic function and neurosecretion, in: Molecular Biology. An international series of monographs and textbooks. Calcium and cell function, vol. 3, pp. 271–309. Ed. W. Y. Cheung. Academic Press, New York 1982.

    Google Scholar 

  23. Demaille, J., Dutruge, E., Capony, J.-P., and Pechère, J.-F., Muscular parvalbumins: a family of homologous calcium-binding proteins, in: Calcium-binding Proteins, pp. 643–677. Eds W. Drabikowski, H., Strzelecka-Golaszewska and E. Carafoli. Elsevier/ North-Holland 1974.

    Google Scholar 

  24. Deuticke, H. J., Über die Sedimentationskonstante von Muskelproteinen. Hoppe-Seyler's Z. physiol. Chem.224 (1934) 216–228.

    Google Scholar 

  25. Drachman, D. B., and Johnston, D. M. J., Development of mammalian fast muscle: dynamic and biochemical properties correlated. J. Physiol., Lond.234 (1973) 29–42.

    Google Scholar 

  26. Ebashi, S., Regulation of muscle contraction. Proc. R. Soc. London B207 (1980) 259–286.

    Google Scholar 

  27. Enfield, D. L., Ericsson, L. H., Blum, H. E., Fischer, E. H., and Neurath, H., Amino-acid sequence of parvalbumin from rabbit skeletal muscle. Proc. natl Acad. Sci. USA72 (1975) 1309–1313.

    Google Scholar 

  28. Finol, H. J., Lewis, D. M., and Owens, R., The effects of denervation on contractile properties of rat skeletal muscle. J. Physiol., Lond.319 (1981) 81–92.

    Google Scholar 

  29. Fischer, E. H., Becker, J.-U., Blum, H. E., Byers, B., Heizmann, C., Kerrick, G. W., Lehky, P., Malencik, D. A., and Pocingwong, S., Concerted regulation of glycogen metabolism and muscle contraction, in: Molecular Basis of Motility, pp. 137–153. Eds L. M. G. Heilmeyer Jr, J.-C. Rüegg and T. Wieland. Springer, Berlin 1976.

    Google Scholar 

  30. Fleisch, H., Mechanisms of normal mineralisation in bone and cartilage in: Biological Mineralization and Demineralization, pp. 233–241. Ed. G. H. Nancollas, Dahlem Konferenzen 1982. Springer Verlag, Berlin/Heidelberg/New York 1982.

    Google Scholar 

  31. Funnum, F., and Storm-Mathisen, I., Localisation of GABA-ergic neurons in the CNS, in: Handbook of Psychopharmacology, vol. 9, pp. 357–401, Eds L. L. Iversen, S. D. Iversen and S. H. Snyder. Plenum Press, New York 1978.

    Google Scholar 

  32. Furie, B. C., Borowski, M., Keyt, B., and Furie, B., γ-Carboxyglutamic acid-containing Ca2+-binding proteins, in: Molecular Biology. An International Series of Monographs and Textbooks. Calcium and Cell Function, vol. 2, pp. 217–241. Ed. W. Y. Cheung. Academic Press, New York 1982.

    Google Scholar 

  33. Gerday, C., Joris, B., Gerardin-Otthiers, V., Collin, S., and Hamoir, G., Parvalbumins from the lungfish (Protopterus dolloi). Biochemie61 (1979) 589–599.

    Google Scholar 

  34. Gerday, C., and Gillis, J. M., The possible role of parvalbumins in the control of contraction. J. Physiol., Lond.258 (1976) 96–7 P.

  35. Gillis, J. M., Thomason, D., Lefèvre, J., and Kretsinger, R. H., Parvalbumins and muscle relaxation: a computer stimulation study. J. Muscle Res. Cell. Motil.3 (1982) 377–398.

    Google Scholar 

  36. Gillis, J. M., Piront, A., and Gosselin-Rey, C., Parvalbumins. Distribution and physical state inside the muscle cell. Biochem. biophys. Acta585 (1979) 444–450.

    Google Scholar 

  37. Goodman, M., Pechère, J.-F., Haiech, J., and Demaille, J. G., Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J. molec. Evol.13 (1979) 331–352.

    Google Scholar 

  38. Gosselin-Rey, C., Piront, A., and Gerday, C., Polymorphism of parvalbumins and tissue distribution. Characterization of component I, isolated from red muscles of Cyprimus carpio L. Biochim. biophys. Acta532 (1978) 294–304.

    Google Scholar 

  39. Gosselin-Rey, C., Fish parvalbumins: Immunochemical reactivity and biological distribution, in: Calcium-binding Proteins, pp. 679–701. Eds W. Drabikowsky, H. Strzelecka-Golaszewska and E. Carafoli, Elsevier/North-Holland 1974.

  40. Haiech, J., Derancourt, J., Pechère, J.-F., and Demaille, J. G., Magnesium and calcium binding to parvalbumins: Evidence for differences between parvalbumins and an explantation of their relaxing function. Biochemistry18 (1979) 2752–2758.

    Google Scholar 

  41. Hamoir, G., The comparative biochemistry of fish sarcoplasmic proteins. Acta zool. pathol., Antverp.46 (1968) 69–76.

    Google Scholar 

  42. Hauschka, P. V., Carr, S. A., and Biemann, K., Primary structure of monkey osteocalcin. Biochemistry21 (1982) 638–642.

    Google Scholar 

  43. Heizmann, C. W., and Strehler, E. E., Chicken parvalbumin. Comparison with parvalbumin-like protein and three other components (Mr=8,000 to 13,000). J. biol. Chem.254 (1979) 4296–4303.

    Google Scholar 

  44. Heizmann, C. W., Berchtold, M. W., and Rowlerson, A. M., Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc. natl Acad. Sci. USA79 (1982) 7243–7247.

    Google Scholar 

  45. Heizmann, C. W., Malencik, D. A., and Fischer, E. H., Generation of parvalbulmin-like proteins from troponin. Biochem. biophys. Res. Commun.57 (1974) 162–168.

    Google Scholar 

  46. Heizmann, C. W., and Eppenberger, H. M., Isolation and characterization of glycogen phosphorylase b from chicken breast muscle: comparison with a protein extracted from the M-line. J. biol. Chem.253 (1978) 270–277.

    Google Scholar 

  47. Hill, A. V., The dimensions of animals and their muscular dynamics. Sci. Prog. Oxford38 (1950) 209–230.

    Google Scholar 

  48. Hitchcock, S. E., and Kendrick-Jones, J., Myosin light chains, carp calcium binding proteins and troponin components: Do they interact to form functional complexes, in: Calcium Transport in Contraction and Secretion, pp. 447–458. Eds E. Carafoli, F. Clementi, W. Drabikowski and A. Margreth. Elsevier/North-Holland, Amsterdam 1975.

    Google Scholar 

  49. Huxley, H. E., Molecular basis of contraction in cross-striated muscles, in: The Structure and Function of Muscle, vol. 1, pp. 302–387. Ed. G. H. Bourne. Academic Press, New York 1972.

    Google Scholar 

  50. Isobe, T., Ishioka, N., Okuyama, T., Structural relation of two S-100 proteins in bovine brain, subunit composition of S-100 a protein. Eur. J. Biochem.115 (1981) 469–474.

    Google Scholar 

  51. Janszen, F. H. A., Cooke, B. A., van Driel, M. J. A., and Van der Molen, H. J., The effects of calcium ions on testosterone production in Leydig cells from rat testis. Biochem. J.160 (1976) 433–437.

    Google Scholar 

  52. Johnson, J. D., Robinson, D. E., Robertson, S. P., Ca2+ exchange with troponin and the regulation of muscle contraction, in: The Regulation of Muscle Contraction: Excitation-Contraction Coupling, pp. 241–259. Eds A. D. Grinnell and M. A. B. Brazier. Academic Press, New York 1981.

    Google Scholar 

  53. Katz, B., and Miledi, R., The role of calcium in neuromuscular facilitation. J. Physiol., Lond.195 (1968) 481–492.

    Google Scholar 

  54. Kretsinger, R. H., Structure and evolution of calcium-modulated proteins. C. R. C. Crit. Rev. Biochem.8 (1980) 119–174.

    Google Scholar 

  55. Kretsinger, R. H., Calcium-binding proteins. A. Rev. Biochem.45 (1976) 239–266.

    Google Scholar 

  56. Kretsinger, R. H., and Nockolds, C. E., Carp muscle calcium-binding protein. II. Structure determination and general description. J. biol. Chem.248 (1973) 3313–3326.

    Google Scholar 

  57. LeDonne, N. C. Jr., and Coffee, C. J., Inability of parvalbumin to function as a calcium-dependent activator of cyclic nucleotide phosphodiesterase activity. J. biol. Chem.254 (1979) 4317–4320.

    Google Scholar 

  58. Lewis, D. M., Kean, C. J. C., and McGarrick, J. D., Dynamic properties of slow and fast muscle and their trophic regulation. Ann. N.Y. Acad. Sci.228 (1974) 105–120.

    Google Scholar 

  59. Lin, C. T., Dedman, J. R., Brinkley, B. B., and Means, A. R. J., Localization of calmodulin in rat cerebellum by immunoelectron microscopy. J. Cell Biol.85 (1980) 473–480.

    Google Scholar 

  60. Linde, A., Bhown, M., and Butler, W. T., Non collagenous proteins of dentin. A re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J. biol. Chem.255 (1980) 5931–5942.

    Google Scholar 

  61. MacManus, J. P., Whitfield, J. F., Boynton, A. L., Durkin, J. P., and Swierenga, S. H. H., Oncomodulin — a widely distributed, tumor-specific, calcium-binding protein. Oncodev. Biol. Med.3 (1982) 79–90.

    Google Scholar 

  62. Malencik, D. A., Heizmann, C. W., and Fischer, E. H., Structural proteins of dog fish skeletal muscle. Biochemistry14 (1975) 715–721.

    Google Scholar 

  63. Means, A. R., Tash, J. S., and Chafouleas, J. G., Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol. Rev.62 (1982) 1–39.

    Google Scholar 

  64. Moews, P. G., and Kretsinger, R. H., Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J. molec. Biol.91 (1975) 201–228.

    Google Scholar 

  65. Müntener, M., Berchtold, M. W., and Heizmann, C. W., Parvalbumin in cross-reinnervated and denervated muscles. Muscle and Nerve (1984) in press.

  66. Ochs, S., and Iqbal, Z., The role of calcium in axoplasmic transport in nerve, in: Molecular Biology. An international Series of Monographs and Textbooks. Calcium and Cell Function, vol. 3, pp. 325–355. Ed. W. Y. Cheung, Academic Press, New York 1982.

    Google Scholar 

  67. Pechère, J.-F., Demaille, J., and Capony, J.-F., Muscular parvalbumins: preparative and analytical methods of general applicability. Biochim. biophys. Acta236 (1971) 391–408.

    Google Scholar 

  68. Pechère, J.-F., and Focant, B., Carp myogens of white and red muscles. Gross isolation on Sephadex columns of the low-molecular-weight components and examination of their participation in anaerobic glycogenolysis. Biochem. J.96 (1965) 113–118.

    Google Scholar 

  69. Pechère, J.-F., Demaille, J., Dutruge, E., Capony, J.-P., Baron, G., and Pina, C., Muscular parvalbumins. Some explorations into their possible biological significance in: Calcium Transport in Contraction and Secretion, pp. 459–468. Eds E. Carafoli, F. Clementi, W. Drabikowski and A. Margreth. Elsevier/North-Holland, Amsterdam 1975.

    Google Scholar 

  70. Pechère, J.-F., Derancourt, J., and Haiech, J., The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal muscle. FEBS Lett.75 (1977) 111–114.

    Google Scholar 

  71. Permyakov, E. A., Kalinichenko, L. P., Yarmolenko, V. V., Burstein, E. A., and Gerday, C., Binding of nucleotides to parvalbumins. Biochem. biophys. Res. Commun.1205 (1982) 1059–1065.

    Google Scholar 

  72. Pfyffer, G. E., Bologa, L., Herschkowitz, N., and Heizmann, C. W., Pavalbumin, a neuronal protein in brain cell cultures. J. Neurochem.43 (1984) 49–57.

    Google Scholar 

  73. Poser, J. W., Esch, F. S., Ling, N. C., and Price, P. A., Isolation and sequence of the Vitamin K-dependent protein from human bone. Under carboxylation of the first glutamic acid residue. J. biol. Chem.255 (1980) 8685–8691.

    Google Scholar 

  74. Potter, J. D., Dedman, J. R., and Means, A. R., Ca2+-dependent regulation of cyclic-AMP phosphodiesterase by parvalbumin. J. biol. Chem.252 (1977) 5609–5611.

    Google Scholar 

  75. Rasmussen, H., Calcium and c-AMP in stimulus-response coupling. Ann. N.Y. Acad. Sci.356 (1980) 346–352.

    Google Scholar 

  76. Schachner, M., Cell type-specific surface antigens in the mammalian nervous system. J. Neurochem.39 (1982) 1–8.

    Google Scholar 

  77. Schenk, R. K., Hunziker, E., and Hermann, W., Structural properties of cells related to tissue mineralization, in: Biological Mineralization and Demineralization, pp. 143–160. Ed. G. H. Nancollas. Dahlem Konferenzen 1982. Springer Verlag, Berlin/Heidelberg/New York 1982.

    Google Scholar 

  78. Strehler, E. E., Eppenberger, H. M., and Heizmann, C. W., Isolation and characterization of parvalbumin from chicken leg-muscle. FEBS Lett.78 (1977) 127–133.

    Google Scholar 

  79. Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L., and Martin, G. R., Osteonectin, a bone-specific protein linking mineral to collagen. Cell26 (1981) 99–105.

    Google Scholar 

  80. Wasserman, R. H., and Fuller, C. S., Vitamin D-induced calcium-binding protein, in: Molecular Biology. An International Series of Monographs and Textbooks. Calcium and Cell Function, vol. 2, pp. 175–215. Ed. W. Y. Cheung. Academic Press, New York 1982.

    Google Scholar 

  81. Winegrad, S., Intracellular calcium movements of frog skeletal muscle during recovery. J. gen. Physiol.51 (1968) 65–83.

    Google Scholar 

  82. Wnuk, W., Cox, J. A., and Stein, E. A., Parvalbumins and other soluble high-affinity calcium-binding proteins from muscle, in: Molecular Biology. An International Series of Monographs and Textbooks. Calcium and Cell Function, vol. 2, pp. 243–278. Ed. W. Y. Cheung, Academic Press, New York 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgments. I am indepted to Drs A. Rowlerson, E. Jenny and C. C. Kuenzle for valuable discussion, my wife for typing this manuscript and the Swiss National Science Foundation (Grant 3.185-0.82), the Sandoz-, Fritz Hoffmann-La Roche- and Wilhelm Sander-Stiftungen for financial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heizmann, C.W. Parvalbumin, and intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia 40, 910–921 (1984). https://doi.org/10.1007/BF01946439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01946439

Key words

Navigation