Skip to main content
Log in

Brain-metastatic melanoma: a neurotrophic perspective

  • Review
  • Published:
Pathology Oncology Research

Abstract

The brain is a unique microenvironment enclosed by the skull and maintaining a highly regulated vascular transport barrier. To metastasize to the brain, malignant tumor cells must attach to microvessel endothelial cells, invade the blood-brain barrier (BBB), and respond to brain survival and growth factors. Neurotrophins (NT) are important in brain invasion because they stimulate this process. In brain-metastatic melanoma cells, NT can promote invasion by enhancing the production of extracellular matrixdegradative enzymes such as heparanase, an enzyme capable of locally destroying both the extracellular matrix and the basement membrane of the BBB. We have examined human and murine melanoma cell lines exhibiting varying abilities to form brain metastases, and have found that they express low-affinity neurotrophin receptor p75NTR in relation to their brain-metastatic potentials. They do not, however, express trkA, the gene encoding the tyrosine kinase receptor TrkA, the high-affinity receptor for nerve growth factor (NGF), the prototypic NT. Presence of functional TrkC, the putative receptor for the invasion-promoting neurotrophin NT-3, was also expressed in these cells. Brain-metastatic melanoma cells can also produce autocrine factors and inhibitors that influence their growth, invasion, and survival in the brain. Synthesis of these factors may influence NT production by brain cells adjacent to the neoplastic invasion front, such as oligodendrocytes and astrocytes. In brain biopsies, we observed increased amounts of NGF and NT-3 in tumor-adjacent tissues at the invasion front of human melanoma tumors. Additionally, we found that astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing NT-regulated heparanase. Trophic, autocrine, and paracrine growth factors may therefore determine whether metastatic cells can successfully invade, colonize, and grow in the central nervous system (CNS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prados M, Wilson C: Neoplasms of the central nervous system. In: Holland, J.F., Frei, III.E., Bast, Jr. R.C., Kufe, D.W., Morton, D.L., Weischselbaum, R.R. (Eds.),Cancer Medicine. Philadelphia: Lea & Febiger, pp. 1080–1119, 1993.

    Google Scholar 

  2. Sawaya R, Ligon, BL, Bindal, AK, et al.: Surgical treatment of metastatic brain tumors. J. Neurooncol 27: 269–277, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Soffietti R, Ruda, R, andMutani, R. Management of brain metastases. J Neurol. 249: 1357–1369, 2002.

    Article  PubMed  Google Scholar 

  4. Steck, P, andNicolson G: Metastasis to the central nervous system. In: Levine, A., Schmidek, H. (Eds.), Molecular Genetics of Nervous System Tumors. New York: Wiley and Sons, pp. 371–379, 1993

    Google Scholar 

  5. Fidler IJ: The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Rew Cancer 3: 1–6, 2003.

    Article  CAS  Google Scholar 

  6. Nicolson GL, Menter DG, Herrmann, JL, et al.: Brain metastasis: role of trophic, autocrine, and paracrine factors in tumor invasion and colonization of the central nervous system. Curr Top Microbiol Immunol 213: 89–115, 1996.

    PubMed  CAS  Google Scholar 

  7. Yano S, Shinohara H, Herbst RS, et al.: Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60: 4959–4967, 2000.

    PubMed  CAS  Google Scholar 

  8. Albino AP, Davis BM, andNanus DM: Induction of growth factor RNA expression in human malignant melanoma: markers of transformation. Cancer Res 51: 4815–4820, 1991.

    PubMed  CAS  Google Scholar 

  9. Herlyn M, Thurin J, Balaban G, et al.: Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 45: 5670–5676, 1985.

    PubMed  CAS  Google Scholar 

  10. Bradshaw RA, Blundell TL, Lapatto R, et al.: Nerve growth factor revisited. Trends Biochem Sci 18: 48–52, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Lee R, Kermani P, Teng KK, andHempstead BL: Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Raff MC: Social controls on cell survival and cell death. Nature 356: 397–400, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Raff MC, Barres BA, Burne, JF, et al.: Programmed cell death and the control of cell survival.: lessons from the nervous system. Science 262: 695–700, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Snider WD: Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627–638, 1994.

    Article  PubMed  Google Scholar 

  15. Jones KR, Farinas I, Backus C, andReichardt LF: Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989–999, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. DiCicco-Bloom E, Friedman, WJ andBlack IB: NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11: 1101–1111, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Chao MV, andBothwell M: Neurotrophins: to cleave or not to cleave. Neuron 33: 9–12, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson D, Lanahan, A, Buck, CR, et al.: Expression and structure of the human NGF receptor. Cell 47: 545–554, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Maher PA: Nerve growth factor induces protein-tyrosine phosphorylation. Proc Natl Acad Sci U.S.A. 85: 6788–6791, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Miyasaka T, Chao, MV Sherline P, andSaltiel AR: Nerve growth factor stimulates a protein kinase in PC-12 cells that phosphorylates microtubule-associated protein-2. J Biol Chem 265:4730–4735, 1990.

    PubMed  CAS  Google Scholar 

  21. Ohmichi M, Decker SJ, andSaltiel AR: Nerve growth factor stimulates the tyrosine phosphorylation of a 38-kDa protein that specifically associates with the src homology domain of phospholipase C-gamma 1. J Biol Chem 267:21601–21606, 1992.

    PubMed  CAS  Google Scholar 

  22. Barbacid M: Nerve growth factor: a tale of two receptors. Oncogene 8: 2033–2042, 1993.

    PubMed  CAS  Google Scholar 

  23. Chao MV: Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev 4: 299–309, 2003.

    Article  CAS  Google Scholar 

  24. Meakin SO, andShooter EM: The nerve growth factor family of receptors. Trends Neurosci 15: 323–331, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Saltiel AR, andDecker SJ: Cellular mechanisms of signal transduction for neurotrophins. Bioassays 16: 405–411, 1994.

    Article  CAS  Google Scholar 

  26. Birren SJ, Lo L, andAnderson DJ: Sympathetic neuroblasts undergo a developmental switch in trophic dependence. Development 119: 597–610, 1993.

    PubMed  CAS  Google Scholar 

  27. Kalcheim C, Carmeli C, andRosenthal A: Neurotrophin-3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci U.S.A. 89: 1661–1665, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Schnell L, Schneider R, Kolbeck R, et al.: Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367: 170–173, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Ernfors P, Lee KF, Kucera J, andJaenisch R: Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77: 503–512, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Klein R, Silos-Santiago I, Smeyne RJ, et al.: Disruption of the neurotrophin-3 receptor genetrkC eliminates la muscle afferents and results in abnormal movements. Nature 368:249–251, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Ernfors P, Lee KF, andJaenisch R: Mice lacking brainderived neurotrophic factor develop with sensory deficits. Nature 368: 147–150, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Klein R, Smeyne RJ, Wurst W, et al.: Targeted disruption of thetrkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75: 113–122, 1993.

    PubMed  CAS  Google Scholar 

  33. Buchman VL, andDavies AM: Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118: 989–1001, 1993.

    PubMed  CAS  Google Scholar 

  34. Crowley C, Spencer SD, Nishimura MC, et al.: Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Smeyne RJ, Klein R, Schnapp A, et al.: Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246–249, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Peacocke M, Yaar M, Mansur CP, et al.: Induction of nerve growth factor receptors on cultured human melanocytes. Proc Natl Acad Sci U.S.A. 85: 5282–5286, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Yaar M, Eller MS, DiBenedetto P, et al.: Thetrk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest 94: 1550–1562, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Yaar M, andGilchrest BA: Human melanocyte growth and differentiation: a decade of new data. J Invest Dermatol 97: 611–617, 1991.

    Article  PubMed  CAS  Google Scholar 

  39. Herrmann JL, Menter DG, Hamada J, et al.: Mediation of NGF-stimulated extracellular matrix invasion by the human melanoma low-affinity p75 neurotrophin receptor: melanoma p75 functions independently oftrkA. Mol Biol Cell 4: 1205–1216, 1993.

    PubMed  CAS  Google Scholar 

  40. Marchetti D, Murry B, Galjour J, andWilke-Greiter A: Human melanoma TrkC: Its association with a purine-analog-sensitive kinase activity. J Cell Biochem 88: 865–872, 2003.

    Article  PubMed  CAS  Google Scholar 

  41. Bibel M, Hoppe E, andBarde, YA: Biochemical and functional interactions between the neurotrophin receptors Trk and p75NTR. EMBO J 18: 616–622, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Marchetti D, McQuillan DJ, Spohn WC, et al.: Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56: 2856–2863, 1996.

    PubMed  CAS  Google Scholar 

  43. Marchetti D, andNicolson GL: Human melanoma cell invasion: selected neurotrophin enhancement of invasion and heparanase activity. J Invest Dermatol Symp Proc 2: 99–105, 1997.

    CAS  Google Scholar 

  44. Marchetti D, andNicolson GL: Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Reg 37: 111–134, 1997.

    Article  CAS  Google Scholar 

  45. Nicolson GL, Menter DG, Herrmann J, et al.: Tumor metastasis to brain: role of endothelial cells, neurotrophins, and paracrine growth factors. Crit Rev Oncol 5: 451–471, 1994.

    CAS  Google Scholar 

  46. Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, andChao MV: High-affinity NGF binding requires coexpression of thetrk proto-oncogene and the low-affinity NGF receptor. Nature 350: 678–683, 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Lee KF, Li E, HuberLJ, Landis SC, et al.: Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Lee KF, Bachman K, Landis S, andJaenisch R: Dependence on p75NTR for innervation of some sympathetic targets. Science 263: 1447–1449, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Verdi JM, Birren SJ, Ibanez CF, et al.: p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12: 733–745, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Ohmichi M, Decker SJ, Pang L, andSaltiel AR: Phospholipase C-gamma 1 directly associates with the p70trk oncogene product through its src homology domains. J Biol Chem 266: 14858–14861, 1991.

    PubMed  CAS  Google Scholar 

  51. Ohmichi M, Decker SJ, andSaltiel AR: Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of thetrk proto-oncogene with src homology 2 domains. Neuron 9: 769–777, 1992.

    Article  PubMed  CAS  Google Scholar 

  52. Avruch J, Zhang XF, andKyriakis JM: Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19:279–283, 1994.

    Article  PubMed  CAS  Google Scholar 

  53. Batistatou A, Volonte C, andGreene LA: Nerve growth factor employs multiple pathways to induce primary response genes in PC12 cells. Mol Biol Cell 3: 363–371, 1992.

    PubMed  CAS  Google Scholar 

  54. Borrello MG, Pelicci G, Arighi E, et al.: The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins. Oncogene 9: 1661–1668, 1994.

    PubMed  CAS  Google Scholar 

  55. Lange-Carter CA, andJohnson GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 265: 1458–1461, 1994.

    Article  PubMed  CAS  Google Scholar 

  56. Obermeier A, Lammers R, Wiesmuller KH, et al.: Identification of Trk binding sites for SHC and phosphatidylinositol — kinase and formation of a multimeric signaling complex. J Biol Chem 268: 22963–22966, 1993.

    PubMed  CAS  Google Scholar 

  57. Obermeier A, Halfter H, Wiesmuller KH, et al.: Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO J 12: 933–941, 1993.

    PubMed  CAS  Google Scholar 

  58. Obermeier A, Bradshaw RA, Seedorf K et al.: Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J 13: 1585–1590, 1994.

    PubMed  CAS  Google Scholar 

  59. Ohmichi M, Matuoka K Takenawa T, andSaltiel AR: Growth factors differentially stimulate the phosphorylation of Shc proteins and their association with Grb2 in PC-12 pheochromocytoma cells. J Biol Chem 269:1143–1148, 1994.

    PubMed  CAS  Google Scholar 

  60. Rozakis-Adcock M, McGlade J, Mbamalu G, et al.: Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360: 689–692, 1992.

    Article  PubMed  CAS  Google Scholar 

  61. Satoh T, Nakafuku M, andKaziro Y: Function of Ras as a molecular switch in signal transduction. J Biol Chem 267: 24149–24152, 1992.

    PubMed  CAS  Google Scholar 

  62. Stephens RM, Loeb DM, Copeland TD, et al.: Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 12: 691–705, 1994.

    Article  PubMed  CAS  Google Scholar 

  63. Taylor LK, Swanson KD, Kerigan J, et al.: Isolation and characterization of a nerve growth factor-regulated Fos kinase from PC12 cells. J Biol Chem 269: 308–318, 1994.

    PubMed  CAS  Google Scholar 

  64. Kaplan DR, andMiller, FD: Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10: 381–391, 2000.

    Article  PubMed  CAS  Google Scholar 

  65. Berg MM, Sternberg DW Hempstead BL, andChao MV: The low-affinity p75 nerve growth factor (NGF) receptor mediates NGF-induced tyrosine phosphorylation.Proc. Natl. Acad. Sci. U. S. A. 88, 7106–7110, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. Hempstead BL, Schleifer LS, andChao MV: Expression of functional nerve growth factor receptors after gene transfer.Science 243, 373–375, 1989.

    Article  PubMed  CAS  Google Scholar 

  67. von Bartheld CS, Kinoshita Y, Prevette D, et al.: Positive and negative effects of neurotrophins on the isthmo-optic nucleus in chick embryos. Neuron 12:639–654, 1994.

    Article  Google Scholar 

  68. Rabizadeh S, Oh J, Zhong, LT, Yang J, et al.: Induction of apoptosis by the low-affinity NGF receptor. Science 261: 345–348, 1993.

    Article  PubMed  CAS  Google Scholar 

  69. Kannan Y, Usami K, Okada M, et al.: Nerve growth factor suppresses apoptosis of murine neutrophils. Biochem Biophys Res Commun 186: 1050–1056, 1992.

    Article  PubMed  CAS  Google Scholar 

  70. Feinstein DL, andLarhammar D: Identification of a conserved protein motif in a group of growth factor receptors. FEBS Lett 272: 7–11, 1990.

    Article  PubMed  CAS  Google Scholar 

  71. Knipper M, Beck A, Rylett J, andBreer H: Neurotrophin induced cAMP and IP3 responses in PC12 cells: different pathways. FEBS Lett 32: 147–152, 1993.

    Article  Google Scholar 

  72. Hantzopoulos PA, Suri C, Glass DJ, et al.: The low-affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13: 187–201, 1994.

    Article  PubMed  CAS  Google Scholar 

  73. Hempstead BL, Patil N Thiel B, andChao, MV: Deletion of cytoplasmic sequences of the nerve growth factor receptor leads to loss of high-affinity ligand binding. J Biol Chem 265: 9595–9598, 1990.

    PubMed  CAS  Google Scholar 

  74. Beutler B, andvan Huffel C: Unraveling function in the TNF ligand and receptor families. Science 264: 667–668, 1994.

    Article  PubMed  CAS  Google Scholar 

  75. Smith CA, Farrah T, andGoodwin RG: The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962, 1994.

    Article  PubMed  CAS  Google Scholar 

  76. Barrett GL, andBartlett PF: The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci U.S.A. 91: 6501–6505, 1994.

    Article  PubMed  CAS  Google Scholar 

  77. Volonte’ C, Ross AH, andGreene LA: Association of a purineanalogue-sensitive protein kinase activity with p75 nerve growth factor receptors. Mol. Biol Cell 4: 71–78, 1993.

    CAS  Google Scholar 

  78. Volonte’ C, andGreene LA: Nerve growth factor-activated protein kinase N. Characterization and rapid near homogeneity purification by nucleotide affinity-exchange chromatography. J Biol Chem 267: 21663–21670, 1992.

    CAS  Google Scholar 

  79. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, andHannun YA: Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265: 1596–1599, 1994.

    Article  PubMed  CAS  Google Scholar 

  80. Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, andHannun YA: Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269: 19605–19609, 1994.

    PubMed  CAS  Google Scholar 

  81. Ross AH, Grob P, Bothwell M, et al.: Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc Natl Acad Sci U.S.A. 81: 6681–6685, 1984.

    Article  PubMed  CAS  Google Scholar 

  82. Morse HG, Gonzalez R, Moore GE, andRobinson WA: Preferential chromosome 1 1q and/or 17q aberrations in short-term cultures of metastatic melanoma in resections from human brain. Cancer Genet Cytogenet 64: 118–126, 1992.

    Article  PubMed  CAS  Google Scholar 

  83. Ishikawa M, Dennis JW, Man S, andKerbel RS: Isolation and characterization of spontaneous wheat germ agglutinin-resistant human melanoma mutants displaying remarkably different metastatic profiles in nude mice. Cancer Res 48: 665–670, 1988.

    PubMed  CAS  Google Scholar 

  84. Marchetti D, Menter D, Jin L, et al.: Nerve growth factor effects on human and mouse melanoma cell invasion and heparanase production. Int J Cancer 55: 692–699, 1993.

    Article  PubMed  CAS  Google Scholar 

  85. Gladson CL, Wilcox JN, Sanders L: Cerebral microenvironment influence et al.: expression of the vitronectin gene in astrocytic tumors. J Cell Sci 108: 947–956, 1995.

    PubMed  CAS  Google Scholar 

  86. Liotta LA, Steeg PS, andStetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation.Cell 64, 327–336, 1991.

    Article  PubMed  CAS  Google Scholar 

  87. Liotta LA, Thorgeirsson UP, andGarbisa S: Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1: 277–288, 1982.

    Article  PubMed  CAS  Google Scholar 

  88. Powell WC, andMatrisian LM: Complex roles of matrix metalloproteinases in tumor progression. Curr Top Microbiol Immunol 213: 1–21, 1996.

    PubMed  CAS  Google Scholar 

  89. Sloane BF, andHonn KV, Cysteine proteinases and metastasis. Cancer Metastasis Rev 3: 249–263, 1984.

    Article  PubMed  CAS  Google Scholar 

  90. Timar J, Lapis K, Dudas J, et al.: Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12: 173–186, 2002.

    Article  PubMed  CAS  Google Scholar 

  91. Bernfield M, Gotte M, Park PW, et al.: Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 68: 729–777, 1999.

    Article  PubMed  CAS  Google Scholar 

  92. Iozzo RV: Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 108. 165–167, 2001.

    PubMed  CAS  Google Scholar 

  93. McKeehan WL, andKan M: Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships. Mol Reprod Dev 39: 69–81, 1994.

    Article  PubMed  CAS  Google Scholar 

  94. Yanagishita M, andHascall VC: Cell surface heparan sulfate proteoglycans. J Biol Chem 267: 9451–9454, 1992.

    PubMed  CAS  Google Scholar 

  95. Vlodavsky I, andFriedmann Y: Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108: 341–347, 2001.

    PubMed  CAS  Google Scholar 

  96. Marchetti D, Liu S, Spohn WC, andCarson DD: Heparanase and a synthetic peptide of heparan sulfate-interacting protein recognize common sites on cell surface and extracellular matrix heparan sulfate. J Biol Chem 272: 15891–15897, 1997.

    Article  PubMed  CAS  Google Scholar 

  97. Nakajima M, Irimura T, andNicolson GL: Heparanases and tumor metastasis. J Cell Biochem 36: 157–167, 1988.

    Article  PubMed  CAS  Google Scholar 

  98. Nakajima M, Irimura T, andNicolson GL: A solid-phase substrate of heparanase: its application to assay of human melanoma for heparan sulfate degradative activity. Anal Biochem 157: 162–171, 1986.

    Article  PubMed  CAS  Google Scholar 

  99. Nakajima M, Irimura I andNicolson GL: Tumor metastasisassociated heparanase (heparan sulfate endoglycosidase) activity in human melanoma cells. Cancer Lett 31: 277–283, 1986.

    Article  PubMed  CAS  Google Scholar 

  100. Vlodavsky I, Friedmann Y, Elkin M, et al.: Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nature Med 5: 793–802, 1999.

    Article  PubMed  CAS  Google Scholar 

  101. Hulett MD, Freeman C, Hamdorf BJ, et al.: Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nature Med 5: 803–809, 1999.

    Article  PubMed  CAS  Google Scholar 

  102. KussiePH, Hulmes JD, Ludwig DL, et al.: Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Comm 261: 183–187, 1999.

    Article  Google Scholar 

  103. Toyoshima M, andNakajima M: Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274: 24153–24160, 1999.

    Article  PubMed  CAS  Google Scholar 

  104. Folkman J: Angiogenesis-dependent diseases. Semin Oncol 28: 536–542, 2001.

    Article  PubMed  CAS  Google Scholar 

  105. Aviezer D, Iozzo RV, Noonan DM, andYayon A: Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol Cell Biol 17: 1938–1946, 1997.

    PubMed  CAS  Google Scholar 

  106. Rodeck U, Becker D, andHerlyn M: Basic fibroblast growth factor in human melanoma. Cancer Cells 3: 308–311, 1991.

    PubMed  CAS  Google Scholar 

  107. Gospodarowicz D, andCheng J: Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128: 475–484, 1986.

    Article  PubMed  CAS  Google Scholar 

  108. Marchetti D, Reiland J, Erwin B, andRoy M: Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer 104: 167–174, 2003.

    Article  PubMed  CAS  Google Scholar 

  109. Menter DG, Herrmann JL, Marchetti D, andNicolson GL: Involvement of neurotrophins and growth factors in brain metastasis formation. Invasion Metastasis 14: 372–384, 1994.

    PubMed  CAS  Google Scholar 

  110. Marchetti D, McCutcheon I, Ross JM, andNicolson GL: Inverse expression of neurotrophin receptor and at the invasion front of brain-metastatic human melanoma tissues. Int J Oncol 7: 87–94, 1995.

    Google Scholar 

  111. Yoshida K, andGage FH: Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res 569: 14–25, 1992.

    Article  PubMed  CAS  Google Scholar 

  112. McCarthy KD, andde Vellis J: Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85: 890–902, 1980.

    Article  PubMed  CAS  Google Scholar 

  113. Marchetti D, Li J, andShen R: Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 60: 4767–4770, 2000.

    PubMed  CAS  Google Scholar 

  114. Marchetti D, andNicolson GL: Human heparanase: a molecular determinant of brain metastasis. Adv Enzyme Reg 41: 343–359, 2001.

    Article  CAS  Google Scholar 

  115. Norenberg MD: Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53: 213–220, 1994.

    Article  PubMed  CAS  Google Scholar 

  116. Kettenmann H, Orkand RK, andSchachner M: Coupling among identified cells in mammalian nervous system cultures. J Neurosci 3: 506–516, 1983.

    PubMed  CAS  Google Scholar 

  117. Wilkin GP, Marriott DR, andCholewinski AJ: Astrocyte heterogeneity. Trends Neurosci 13: 43–46, 1990.

    Article  PubMed  CAS  Google Scholar 

  118. Hirano A, Kawanami T, andLlena JF: Electron microscopy of the blood-brain barrier in disease. Microsc Res Tech 27: 543–556, 1994.

    Article  PubMed  CAS  Google Scholar 

  119. Kimelberg HK, andRansom BR: Physiological aspects of astrocyte swelling. In: Fedoroff, S., Verandakis, A. (Eds.),Astrocytes. Orlando: Academic Press, pp. 129–166, 1986

    Google Scholar 

  120. Lantos PL, Luthert PJ, andDeane BR: Vascular permeability and cerebral edema in experimental brain tumors. In: Inaba, Y., Klatzo, I., Spatz, I. (Eds.),Brain Edema, New York: Springer-Verlag, pp. 40–47, 1984

    Google Scholar 

  121. Klatzo I, Chui E, Fujiwara K, andSpatz M: Resolution of vasogenic brain edema. Adv Neurol 28: 359–373, 1980.

    PubMed  CAS  Google Scholar 

  122. Walch ET, Albino AP, andMarchetti D: Correlation of overexpression of the low-affinity p75 neurotrophin receptor with augmented invasion and heparanase production in human malignant melanoma cells. Int J Cancer 82: 112–120, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, D., Denkins, Y., Reiland, J. et al. Brain-metastatic melanoma: a neurotrophic perspective. Pathol. Oncol. Res. 9, 147–158 (2003). https://doi.org/10.1007/BF03033729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033729

Keywords

Navigation