Skip to main content
Log in

Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thirty-four strains of lactic acid bacteria (seven Bifidobacterium, 11 Lactobacillus, six Lactococcus, and 10 Streptococcus thermophilus) were assayed in vitro for antioxidant activity against ascorbic and linolenic acid oxidation (TAAAA and TAALA), trolox-equivalent antioxidant capacity (TEAC), intracellular glutathione (TGSH), and superoxide dismutase (SOD). Wide dispersion of each of TAAAA, TAALA, TEAC, TGSH, and SOD occurred within bacterial groups, indicating that antioxidative properties are strain specific. The strains Bifidobacterium animalis subsp. lactis DSMZ 23032, Lactobacillus acidophilus DSMZ 23033, and Lactobacillus brevis DSMZ 23034 exhibited among the highest TAAAA, TAALA, TEAC, and TGSH values within the lactobacilli and bifidobacteria. These strains were used to prepare a potentially antioxidative probiotic formulation, which was administered to rats at the dose of 107, 108, and 109 cfu/day for 18 days. The probiotic strains colonized the colon of the rats during the trial and promoted intestinal saccharolytic metabolism. The analysis of plasma antioxidant activity, reactive oxygen molecules level, and glutathione concentration, revealed that, when administered at doses of at least 108 cfu/day, the antioxidant mixture effectively reduced doxorubicin-induced oxidative stress. Probiotic strains which are capable to limit excessive amounts of reactive radicals in vivo may contribute to prevent and control several diseases associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM (2011) The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 301:G401–G424. doi:10.1152/ajpgi.00110.2011

    Article  Google Scholar 

  • Babbs CF (1990) Free radicals and the etiology of colon cancer. Free Radic Biol Med 8:191–200. doi:10.1016/0891-5849(90)90091-V

    Article  CAS  Google Scholar 

  • Beuchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–28. doi:10.1016/0003-2697(71)90370-8

    Article  Google Scholar 

  • Bordoni A, Danesi F, Malaguti M, Di Nunzio M, Pasqui F, Maranesi M, Biagi LP (2008) Dietary Selenium for the counteraction of oxidative damage: fortified foods or supplements? Br J Nutr 99:191–197. doi:10.1017/S0007114507793911

    Article  CAS  Google Scholar 

  • Davis CD, Milner JA (2009) Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem 20:743–752. doi:10.1016/j.jnutbio.2009.06.001

    Article  CAS  Google Scholar 

  • Dellomonaco C, Amaretti A, Zanoni S, Pompei A, Matteuzzi D, Rossi M (2007) Fermentative production of superoxide dismutase with Kluyveromyces marxianus. J Ind Microbiol Biotechnol 34:27–34. doi:10.1007/s10295-006-0158-4

    Article  CAS  Google Scholar 

  • Di Nunzio M, Valli V, Bordoni A (2011) Pro- and anti-oxidant effects of polyunsaturated fatty acid supplementation in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 85:121–127. doi:10.1016/j.plefa.2011.07.005

    Article  Google Scholar 

  • FAO/WHO working group (2001) Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba, Argentina (October 1–4, 2001)

  • Finch J, Munhutu MN, Whitaker-Worth DL (2010) Atopic dermatitis and nutrition. Clin Dermatol 28:605–614. doi:10.1016/j.clindermatol.2010.03.032

    Article  Google Scholar 

  • Firuzi O, Miri R, Tavakkoli M, Saso L (2011) Antioxidant therapy: current status and future prospects. Curr Med Chem 18:3871–3888

    Article  CAS  Google Scholar 

  • Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A (2009) Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43:163–172. doi:10.1016/j.alcohol.2008.12.009

    Article  CAS  Google Scholar 

  • Girotti S, Ferri E, Fini F, Bolelli L, Sabatini AG, Budini R, Sichertova D (2004) Automated and manual luminescent assay of antioxidant capacity: analytical features by comparison. Talanta 64:665–670. doi:10.1016/j.talanta.2004.03.041

    Article  CAS  Google Scholar 

  • Guandalini S (2011) Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol 45:S149–S153. doi:10.1097/MCG.0b013e3182257e98

    Article  Google Scholar 

  • Hathout AS, Mohamed SR, El-Nekeety AA, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58:179–186. doi:10.1016/j.toxicon.2011.05.015

    Article  CAS  Google Scholar 

  • Kaizu H, Sasaki M, Nakajima H, Suzuki Y (1993) Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J Dairy Sci 76:2493–2499. doi:10.3168/jds.S0022-0302(93)77584-0

    Article  CAS  Google Scholar 

  • Kullisar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairanc C, Kilk A (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microb 72:215–224. doi:10.1016/S0168-1605(01)00674-2

    Article  Google Scholar 

  • Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466. doi:10.1021/jf981149l

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lutgendorff F, Trulsson LM, van Minnen LP, Rijkers GT, Timmerman HM, Franzén LE, Gooszen HG, Akkermans LM, Söderholm JD, Sandström PA (2008) Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 295:G1111–G1121. doi:10.1152/ajpgi.00603.2007

    Article  CAS  Google Scholar 

  • Lutgendorff F, Nijmeijer RM, Sandström PA, Trulsson LM, Magnusson KE, Timmerman HM, van Minnen LP, Rijkers GT, Gooszen HG, Akkermans LM, Söderholm JD (2009) Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS One 4:e4512. doi:10.1371/journal.pone.0004512

    Article  Google Scholar 

  • Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62:1689–1696. doi:10.1007/s00284-011-9915-3

    Article  CAS  Google Scholar 

  • Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21:1–27. doi:10.1080/08910600902815561

    Article  CAS  Google Scholar 

  • Mishra OP, Kovachich GB (1984) Inhibition of the autoxidation of ascorbate and norepinephrine by extracts of Clostridium butyricum, Megasphaera elsdenii and Escherichia coli. Life Sci 35:849–854. doi:10.1016/0024-3205(84)90410-7

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  • Nardone G, Compare D, Liguori E, Di Mauro V, Rocco A, Barone M, Napoli A, Lapi D, Iovene MR, Colantuoni A (2010) Protective effects of Lactobacillus paracasei F19 in a rat model of oxidative and metabolic hepatic injury. Am J Physiol Gastrointest Liver Physiol 299:G669–G676. doi:10.1152/ajpgi.00188.2010

    Article  CAS  Google Scholar 

  • Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255

    CAS  Google Scholar 

  • Peran L, Camuesco D, Comalada M, Bailon E, Henriksson A, Xaus J, Zarzuelo A, Galvez J (2007) A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J Appl Microbiol 103:836–844. doi:10.1111/j.1365-2672.2007.03302.x

    Article  CAS  Google Scholar 

  • Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M (2007a) Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73:179–185. doi:10.1128/AEM.01763-06

    Article  CAS  Google Scholar 

  • Pompei A, Cordisco L, Amaretti A, Zanoni S, Raimondi S, Matteuzzi D, Rossi M (2007b) Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr 137:2742–2746

    CAS  Google Scholar 

  • Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, Rossi M (2008) In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14:280–286

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  • Rossi M, Amaretti A (2010) Probiotic properties of bifidobacteria. In: Mayo B, van Sinderen D (eds) Bifidobacteria: genomics and molecular aspects. Horizon Scientific Press, UK, pp 97–123. ISBN 978-1-904455-68-4

    Google Scholar 

  • Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool? Redox Rep 9:145–152. doi:10.1179/135100004225004814

    Article  CAS  Google Scholar 

  • Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, Tomita M (1992) Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75:3296–3306. doi:10.3168/jds.S0022-0302(92)78105-3

    Article  CAS  Google Scholar 

  • Songisepp E, Kals J, Kullisaar T, Mändar R, Hütt P, Zilmer M, Mikelsaar M (2005) Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr J 4:22. doi:10.1186/1475-2891-4-22

    Article  Google Scholar 

  • Spyropoulos BG, Misiakos EP, Fotiadis C, Stoidis CN (2011) Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Dig Dis Sci 56:285–294. doi:10.1007/s10620-010-1307-1

    Article  Google Scholar 

  • Talwalkar A, Kailasapathy K (2003) Metabolic and biochemical responses of probiotic bacteria to oxygen. J Dairy Sci 86:2537–2546. doi:10.3168/jds.S0022-0302(03)73848-X

    Article  CAS  Google Scholar 

  • Uskova MA, Kravchenko LV (2009) Antioxidant properties of lactic acid bacteria-probiotic and yogurt strains. Vopr Pitan 78:18–23

    CAS  Google Scholar 

  • Virtanen T, Pihlanto A, Akkanen S, Korhonen H (2007) Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J Appl Microbiol 102:106–115. doi:10.1111/j.1365-2672.2006.03072.x

    Article  CAS  Google Scholar 

  • Wang YC, Yu RC, Chou CC (2006) Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23:128–135. doi:10.1016/j.fm.2005.01.020

    Article  Google Scholar 

  • Zanoni S, Pompei A, Cordisco L, Amaretti A, Rossi M, Matteuzzi D (2008) Growth kinetics on oligo- and polysaccharides and promising features of three antioxidative potential probiotic strains. J Appl Microbiol 105:1266–1276. doi:10.1111/j.1365-2672.2008.03860.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Anidral/Probiotical Ltd., Novara, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maddalena Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaretti, A., di Nunzio, M., Pompei, A. et al. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97, 809–817 (2013). https://doi.org/10.1007/s00253-012-4241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4241-7

Keywords

Navigation