Skip to main content

Advertisement

Log in

Quantitative in situ proteomics; a proposed pathway for quantification of immunohistochemistry at the light-microscopic level

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Companion diagnostics, tests that purport to classify patients into “responders” and “non-responders” for a specified targeted therapy, demand methods that quantify the actual amount of the corresponding target molecule in tumors from these patients. Various methods are employed depending upon the nature of the target. Many of the candidate therapeutic agents target the abnormal expression of a protein, the detection of which lends itself to an immunohistochemistry (IHC) approach. This review focuses on IHC with formalin-fixed paraffin-embedded (FFPE) tissues for purely pragmatic reasons; first, the morphologic information pertaining to the tumor is of value and should not be discarded as in extraction type assays; second, FFPE tissues are mostly what we have to hand at the time that the diagnostic question is posed. During the four decades of employment of IHC involving the production of a variety of special stains used in the diagnosis or classification of tumors, we have acquired some bad habits, essentially when judging the IHC result via the perception of a “good” stain that “pleases the eye” of the user pathologist, and nothing more. This review takes, as its basic premise, the notion that IHC can be upgraded from its use as a qualitative special staining method to an accurate and reliable quantitative “tissue-based immunologic assay”. If accomplished, this enhanced IHC assay would serve accurately to quantify proteins in tissue sections, analogous to the use of the ELISA (enzyme-linked immunosorbent assay) method in the clinical laboratory. The necessary steps for converting IHC to a tissue-based ELISA-like immunoassay of immediate practical use are reviewed with constructive suggestions for steps that can be (must be) taken to achieve the practical reality of quantitative in situ proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive fctors in breast cancer by IHC analysis. Mod Pathol 11:115–124

    Google Scholar 

  • Becker KF, Taylor CR (2011) “Liquid morphology”: immunochemical analysis of proteins extracted from formalin-fixed paraffin-embedded tissues: combining proteomics with immunohistochemistry. Appl Immunohistochem Mol Morphol 19:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bogen SA, Sompuram SR (2004) Recent trends and advances in immunodiagnostics of solid tumors [review]. Biodrugs 18:387–398

    Article  PubMed  Google Scholar 

  • Canadian Association of Pathologists-Association canadienne des pathologistes National Standards Committee, Torlakovic EE, Riddell R, Banerjee D, El-Zimaity H, Pilavdzic D, Dawe P, Magliocco A, Barnes P, Berendt R, Cook D, Gilks B, Williams G, Perez-Ordonez B, Wehrli B, Swanson PE, Otis CN, Nielsen S, Vyberg M, Butany J (2010) Canadian Association of Pathologists-Association canadienne des pathologistes National Standards Committee/Immunohistochemistry: best practice recommendations for standardization of immunohistochemistry tests. Am J Clin Pathol 133:354–365

    Article  Google Scholar 

  • Cartun RW (2014) Negative reagent controls in diagnostic immunohistochemistry: do we need them? An evidence-based recommendation for laboratories throughout the world. Appl Immunohistochem Mol Morphol 22:159–161

    Article  PubMed  Google Scholar 

  • Cheng L, Bostwick DG (2011) Essentials of anatomic pathology. Humana/Springer, New York

    Book  Google Scholar 

  • College of American Pathologists (2013) Anatomic pathology checklist CAP accreditation program. College of American Pathologists, Northfield, pp 35–37

    Google Scholar 

  • Conan Doyle A (1892) The adventures of Sherlock Holmes. Adventure XI. The adventure of the beryl coronet. Strand Magazine 3:511–525

    Google Scholar 

  • Goldstein NS, Hewitt SM, Taylor CR, Members of Ad-Hoc Committee On Immunohistochemistry Standardization (2007) Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mol Morphol 15:124–133

    Article  CAS  PubMed  Google Scholar 

  • Gown AM (2008) Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21:S8–S15

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Taylor CR (2014) Practicing pathology in the era of big data and personalized medicine. Appl Immunohistochem Mol Morphol 22:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammond ME, Hayes DH, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love RE, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 134:907–922

    PubMed Central  PubMed  Google Scholar 

  • Hewitt SM, Robinowitz M, Bogen SA, Gown AM, Kalra KL, Otis CN, Spaulding B, Taylor CR (2011) Quality assurance for design control and implementation of immunohistochemistry assays: approved guidelines, vol 31, 2nd edn. Clinical Lab Standards Institute, Wayne, no. 4

    Google Scholar 

  • Ingram M, Tachy GB, Ward BR, Imam SA, Atkinson R, Ho H, Taylor CR (2010) Tissue engineered tumor models. Biotech Histochem 85:213–219

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Ward B, Saha B, Young L, Groshen S, Techy G, Lu Y, Atkinson R, Taylor CR, Ingram M, Imam SA (2011) Human breast cancer histioid: an in vitro 3D co-culture model that mimics breast tumor tissue. J Histochem Cytochem 59:1087–1100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leong AS, Leong TY (2011) Standardization in immunohistochemistry. Methods Mol Biol 724:37–68

    Article  CAS  PubMed  Google Scholar 

  • Mire-Sluis A, Ritter N, Cherney B, Schmalzing D, Blümel M (2014a) Reference standards for therapeutic proteins: current regulatory and scientific best practices and remaining needs. Part 1. Bioprocess Int 12:26–36

    Google Scholar 

  • Mire-Sluis A, Ritter N, Cherney B, Schmalzing D, Blümel M (2014b) Reference standards for therapeutic proteins: current regulatory and scientific best practices and remaining needs. Part 2. Bioprocess Int 12:12–38

    Google Scholar 

  • Neumeister VM, Parisi F, England AM, Siddiqui S, Anagnostou V, Zarrella EM, Vassilakopolou M, Bai Y, Saylor S, Sapino A, Kluger Y, Hicks DG, Bussolati G, Kwei S, Rimm DL (2014) A tissue quality index; an intrinsic control for measurement of effects of pre-analytic variables on FFPE tissue. Lab Invest 94:467–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • NordiQC (2014) Nordic Immunohistochemical Quality Control. www.nordiqc.org. Accessed May 14th. 2014

  • Ploeg M van der, Duijndam WAL (1986) Matrix models: essential tools for microscopic cytochemical research. Histochemistry 84:283–300

  • Riera J, Simpson JF, Tamayo R, Battifora H (1999) Use of cultured cells as a control for quantitative immunocytochemical analysis of estrogen receptor in breast cancer: the Quicgel method. Am J Clin Pathol 111:329–335

    CAS  PubMed  Google Scholar 

  • Shi SR, Cote RJ, Taylor CR (2001) Antigen retrieval immunohistochemistry and molecular morphology in the year 2001. Appl Immunohistochem Mol Morphol 9:107–116

    CAS  PubMed  Google Scholar 

  • Sompuram SR, Vani K, Hafer LJ, Bogen SA (2006) Antibodies immunoreactive with formalin-fixed tissue antigens recognize linear protein epitopes. Am J Clin Pathol 125:82–90

    Article  CAS  PubMed  Google Scholar 

  • Taylor CR (1974) The nature of Reed-Sternberg cells and other malignant “reticulum” cells. Lancet II:802–807

    Article  Google Scholar 

  • Taylor CR (1976) Immunohistological observations upon the development of reticulum cell sarcoma in the mouse. J Pathol 118:201–219

    Article  CAS  PubMed  Google Scholar 

  • Taylor CR (1992) Report of the Immunohistochemistry Steering Committee of the Biological Stain Commission. Proposed format: package insert for immunohistochemistry products. Biotech Histochem 67:323–338

    Article  CAS  PubMed  Google Scholar 

  • Taylor CR (2000) The total test approach to standardization of immunohistochemistry. Arch Pathol Lab Med 124:945–951

    CAS  PubMed  Google Scholar 

  • Taylor CR (2006) Quantifiable internal reference standards for immunohistochemistry: the measurement of quantity by weight. Appl Immunohistochem Mol Morphol 14:253–259

    Article  PubMed  Google Scholar 

  • Taylor CR (2010) Focus on biospecimens: the issue is the tissue. Observations on the “NCI-NIST fitness for purpose quality assessment and standards workshop”. Appl Immunohistochem Mol Morphol 19:95–98

    Article  Google Scholar 

  • Taylor CR (2011) From microscopy to whole slide digital images: a century and a half of image analysis. Appl Immunohistochem Mol Morphol 19:491–493

    Article  PubMed  Google Scholar 

  • Taylor CR (2014) Predictive biomarkers and companion diagnostics. The future of immunohistochemistry—“in situ proteomics”, or just a “stain”? Appl Immunohistochem Mol Morphol 22:555–562

    Article  PubMed  Google Scholar 

  • Taylor CR, Becker KF (2011) Liquid morphology: immunochemical analysis of proteins extracted from formalin fixed paraffin embedded tissues: combining proteomics with immunohistochemistry. Appl Immunohistochem Mol Morphol 19:1–9

    Article  PubMed  Google Scholar 

  • Taylor CR, Burns J (1974) The demonstration of plasma cells and other immunoglobulin containing cells in formalin-fixed, paraffin-embedded tissues using peroxidase labeled antibody. J Clin Pathol 27:14–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor CR, Cote RJ (2005) Immunomicroscopy: a diagnostic tool for the surgical pathologist, 3rd edn. Elsevier, Saunders, Philadelphia

    Google Scholar 

  • Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry-issues concerning methods, utility and semiquantitative assessment II. Histopathology 49:411–424

    Article  CAS  PubMed  Google Scholar 

  • Taylor CR, Shi SR, Barr N, Wu N (2006) Techniques of immunohistochemistry: principles, pitfalls and standardization. In: Dabbs DJ (ed) Diagnostic immunohistochemistry, 2nd edn. Elsevier, Philadelphia, pp 1–42

    Chapter  Google Scholar 

  • Torlakovic EE, Francis G, Garratt J, Gilks B, Hyjek E, Ibrahim M, Miller R, Nielsen S, Petcu EB, Swanson PE, Taylor CR, Vyberg M, International Ad Hoc Expert Panel (2014) Standardization of negative controls in diagnostic immunohistochemistry: recommendations from the International Ad Hoc committee. Appl Immunohistochem Mol Morphol 22:241–252

  • Torlakovic EE, Nielsen S, Francis G, Garratt J, Gilks B, Goldsmith JD, Hornick JL, Hyjek E, Ibrahim M, Miller R, Petcu EB, Swanson PE, Zhou X, Taylor CR, Vyberg M (2015) Standardization of positive controls in diagnostic immunohistochemistry: recommendations from the International Ad Hoc Committee. Appl Immunohistochem Mol Morphol 23:1–18

    Article  CAS  PubMed  Google Scholar 

  • UKNEQAS (2014) United Kingdom National External Quality Assessment Service. www.ukneqas.org.uk. Accessed May 14th. 2014

  • Vani K, Sompuram SR, Fitzgibbons P, Bogen SA (2008) National HER2 proficiency test results using standardized quantitative controls: characterization of laboratory failures. Arch Pathol Lab Med 132:211–216

    PubMed  Google Scholar 

  • Weidner N, Cote RJ, Suster S, Weiss LM (2009) Modern surgical pathology. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Welsh AW, Moeder CB, Kumar S, Gershkovich P, Alarid ET, Harigopal M, Haffty BG, Rimm DL (2011) Standardization of estrogen receptor measurement in breast cancer suggests false-negative results are a function of threshold intensity rather than percentage of positive cells. J Clin Oncol 29:2978–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilbur DC, Willis J, Mooney RA, Fallon MA, Moynes R, di Sant'Agnese PA (1992) Estrogen and progesterone receptor detection in archival formalin fixed paraffin-embedded tissue from breast carcinomas: a comparison of immunohistochemical with the dextran coated charcoal assay. Mod Pathol 5:79–88

    CAS  PubMed  Google Scholar 

  • Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon CL, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF, American Society of Clinical Oncology, College of American Pathologists (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  CAS  PubMed  Google Scholar 

  • Yaziji H, Taylor CR (2007) Begin at the beginning, with the tissue! The key message underlying the ASCO/CAP task-force guideline recommendations for HER2 testing. Appl Immunohistochem Mol Morphol 15:239–41

    Article  PubMed  Google Scholar 

  • Yaziji H, Taylor C, Goldstein N, Dabbs D, Hammond E, Hewlett B, Floyd A, Barry TS, Martin A, Badve S, Baehner F, Cartun R, Eisen R, Swanson P, Hewitt S, Vyberg M, Hicks D, Members of the Standardization Ad-Hoc Consensus Committee (2008) Consensus recommendations on estrogen receptor testing in breast cancer by immunohistochemistry. Appl Immunohistochem Mol Morphol 16:513–520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive R. Taylor.

Additional information

The author reports no disclosures and no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, C.R. Quantitative in situ proteomics; a proposed pathway for quantification of immunohistochemistry at the light-microscopic level. Cell Tissue Res 360, 109–120 (2015). https://doi.org/10.1007/s00441-014-2089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2089-0

Keywords

Navigation