Skip to main content

Advertisement

Log in

An update on genetic studies of systemic lupus erythematosus

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a complex, multifactorial autoimmune disease. Genetic factors are thought to contribute to its pathogenesis. There have been numerous recent advances in the study of murine and human lupus genetics. In well-defined experimental transgenic or gene-knockout mouse models, the development of lupus-like disease has implicated specific genes and pathways in the disease pathogenesis. Linkage analyses have mapped multiple susceptibility loci and disease suppressive loci using inbred strains of mice that spontaneously develop lupus-like disease. Elegant genetic dissection and function studies have led to the recent identification of two murine candidate susceptibility genes, Ifi202 (encoding an interferon-inducible protein) and Cr2 (encoding complement receptors 1 and 2). In human lupus, casecontrol studies have established associations of SLE with certain major histocompatibility class II alleles, complement deficiencies, and polymorphisms of Fcψ receptor genes, a complement-related gene, and cytokine genes. During the past several years, linkage analyses using SLE multiplex families have provided many chromosomal regions for further exploration of susceptibility genes. Six regions exhibiting significant linkage to SLE are promising. Studies are underway to fine map these linked regions and to identify the genes in the susceptibility regions. An understanding of the genes involved in the development of lupus should provide targets for more focused therapy in lupus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Tsao BP: The genetics of human lupus. In Dubois’ Lupus Erythematosus. Edited by Wallace DJ, Hahn BH. Philadelphia: Lippincott Williams & Wilkins; 2002:97–120. This is an updated, comprehensive review of the genetic basis of human lupus.

    Google Scholar 

  2. Wakeland EK, Liu K, Graham RR, Behrens TW: Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001, 15:397–408. This review discusses the results of genetic mapping studies of murine and human systemic lupus erythematosus.

    Article  PubMed  CAS  Google Scholar 

  3. Morel L, Croker BP, Blenman KR, et al.: Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc Natl Acad Sci U S A 2000, 97:6670–6675.

    Article  PubMed  CAS  Google Scholar 

  4. Morel L, Blenman KR, Croker BP, Wakeland EK: The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci U S A 2001, 98:1787–1792.

    Article  PubMed  CAS  Google Scholar 

  5. Boackle SA, Holers VM, Chen X, et al.: Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity 2001, 15:775–785. This study presents evidence for a role of Cr2 in susceptibility to murine lupus.

    Article  PubMed  CAS  Google Scholar 

  6. Drake CG, Rozzo SJ, Hirschfeld HF, et al.: Analysis of the New Zealand Black contribution to lupus-like renal disease: multiple genes that operate in a threshold manner. J Immunol 1995, 154:2441–2447.

    PubMed  CAS  Google Scholar 

  7. Rozzo SJ, Allard JD, Choubey D, et al.: Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001, 15:435–443. This study suggests a pivotal role of interferon and Ifi202 in the development of murine lupus.

    Article  PubMed  CAS  Google Scholar 

  8. Kono DH, Theofilopoulos AN: The genetics of murine systemic lupus erythematosus. In Dubois’ Lupus Erythematosus. Edited by Wallace DJ, Hahn BH. Philadelphia: Lippincott Williams & Wilkins; 2002:121–143.

    Google Scholar 

  9. Reveille JD, Moulds JM, Ahn C, et al.: Systemic lupus erythematosus in three ethnic groups: I, the effects of HLA class II, C4, and CR1 alleles, socioeconomic factors, and ethnicity at disease onset. LUMINA Study Group. Lupus in minority populations, nature versus nurture. Arthritis Rheum 1998, 41:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  10. Sullivan KE, Wooten C, Schmeckpeper BJ, et al.: A promoter polymorphism of tumor necrosis factor α associated with systemic lupus erythematosus in African-Americans. Arthritis Rheum 1997, 40:2207–2211.

    Article  PubMed  CAS  Google Scholar 

  11. Rood MJ, van Krugten MV, Zanelli E, et al.: TNF-308A and HLADR3 alleles contribute independently to susceptibility to systemic lupus erythematosus. Arthritis Rheum 2000, 43:129–134.

    Article  PubMed  CAS  Google Scholar 

  12. Lu L-Y, Ding W-Z, Fici D, et al.: Molecular analysis of major histocompatibility complex allelic associations with systemic lupus erythematosus in Taiwan. Arthritis Rheum 1997, 40:1138–1145.

    Article  PubMed  CAS  Google Scholar 

  13. Rudwaleit M, Tikly M, Khamashta M, et al.: Interethnic differences in the association of tumor necrosis factor promoter polymorphisms with systemic lupus erythematosus. J Rheumatol 1996, 23:1725–1728.

    PubMed  CAS  Google Scholar 

  14. Wilson AG, de Vries N, Pociot F, et al.: An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med 1993, 177:557–560.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson AG, Symons JA, McDowell TL, et al.: Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997, 94:3195–3199.

    Article  PubMed  CAS  Google Scholar 

  16. Bidwell J, Keen L, Gallagher G, et al.: Cytokine gene polymorphism in human disease: on-line databases [review]. Genes Immun 1999, 1:3–19.

    Article  PubMed  CAS  Google Scholar 

  17. Gaffney PM, Kearns GM, Shark KB, et al.: A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci U S A 1998, 95:14875–14879.

    Article  PubMed  CAS  Google Scholar 

  18. Shai R, Quismorio FP Jr, Li L, et al.: Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999, 8:639–644.

    Article  PubMed  CAS  Google Scholar 

  19. Komata T, Tsuchiya N, Matsushita M, et al.: Association of tumor necrosis factor receptor 2 (TNFR2) polymorphism with susceptibility to systemic lupus erythematosus. Tissue Antigens 1999, 53:527–533.

    Article  PubMed  CAS  Google Scholar 

  20. Morita C, Horiuchi T, Tsukamoto H, et al.: Association of tumor necrosis factor receptor type II polymorphism 196R with systemic lupus erythematosus in the Japanese: molecular and functional analysis. Arthritis Rheum 2001, 44:2819–2827.

    Article  PubMed  CAS  Google Scholar 

  21. Al Ansari AS, Ollier WE, Villarreal J, et al.: Tumor necrosis factor receptor II (TNFRII) exon 6 polymorphism in systemic lupus erythematosus. Tissue Antigens 2000, 55:97–99.

    Article  PubMed  CAS  Google Scholar 

  22. Tsuchiya N, Kawasaki A, Tsao BP, et al.: Analysis of the association of HLA-DRB1, TNFalpha promoter and TNFR2 (TNFRSF1B) polymorphisms with SLE using transmission disequilibrium test. Genes Immun 2001, 2:317–322.

    Article  PubMed  CAS  Google Scholar 

  23. Lee EB, Yoo JE, Lee YJ, et al.: Tumor necrosis factor receptor 2 polymorphism in systemic lupus erythematosus: no association with disease. Hum Immunol 2001, 62:1148–1152.

    Article  PubMed  CAS  Google Scholar 

  24. Chen Z, Koralov SB, Kelsoe G: Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med 2000, 192:1339–1352.

    Article  PubMed  CAS  Google Scholar 

  25. Slingsby JH, Norsworthy P, Pearce G, et al.: Homozygous hereditary C1q deficiency and systemic lupus erythematosus: a new family and the molecular basis of C1q deficiency in three families. Arthritis Rheum 1995, 39:663–670.

    Article  Google Scholar 

  26. Botto M, Dell’Agnola C, Bygrave AE, et al.: Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998, 19:56–59.

    Article  PubMed  CAS  Google Scholar 

  27. Lau YL, Lau CS, Chan SY, et al.: Mannose-binding protein in Chinese patients with systemic lupus erythematosus. Arthritis Rheum 1996, 39:706–708.

    Article  PubMed  CAS  Google Scholar 

  28. Senaldi G, Davies ET, Peakman M, et al.: Frequency of mannose-binding protein deficiency in patients with systemic lupus erythematosus. Arthritis Rheum 1995, 38:1713–1714.

    Article  PubMed  CAS  Google Scholar 

  29. Super M, Gillies SD, Foley S, et al.: Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet 1992, 2:50–55.

    Article  PubMed  CAS  Google Scholar 

  30. Davies EJ, Snowden N, Hillarby MC, et al.: Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum 1995, 38:110–114.

    Article  PubMed  CAS  Google Scholar 

  31. Ip WK, Chan SY, Lau CS, Lau YL: Association of systemic lupus erythematosus with promoter polymorphisms of the mannosebinding lectin gene. Arthritis Rheum 1998, 41:1663–1668.

    PubMed  CAS  Google Scholar 

  32. Sullivan KE, Wooten C, Goldman D, Petri MA: Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum 1996, 39:2046–2051.

    Article  PubMed  CAS  Google Scholar 

  33. Davies EJ, Teh LS, Ordi-Ros J, et al.: A dysfunctional allele of the mannose binding protein gene associates with systemic lupus erythematosus in a Spanish population. J Rheumatol 1997, 24:485–488.

    PubMed  CAS  Google Scholar 

  34. Salmon JE, Pricop L: Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease. Arthritis Rheum 2001, 44:739–750.

    Article  PubMed  CAS  Google Scholar 

  35. Salmon JE, Millard S, Schachter LA, et al.: Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996, 97:1348–1354.

    PubMed  CAS  Google Scholar 

  36. Duits AJ, Bootsma H, Derksen RHWM, et al.: Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 1995, 39:1832–1836.

    Article  Google Scholar 

  37. Song YW, Han CW, Kang SW, et al.: Abnormal distribution of Fc gamma receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum 1998, 41:421–426.

    Article  PubMed  CAS  Google Scholar 

  38. Zuniga R, Ng S, Peterson MG, et al.: Low-binding alleles of Fcgamma receptor types IIA and IIIA are inherited independently and are associated with systemic lupus erythematosus in Hispanic patients. Arthritis Rheum 2001, 44:361–367.

    Article  PubMed  CAS  Google Scholar 

  39. Botto M, Theodoridis E, Thompson EM, et al.: Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin Exp Immunol 1996, 104:264–268.

    Article  PubMed  CAS  Google Scholar 

  40. D’Alfonso S, Rampi M, Bocchio D, et al.: Systemic lupus erythematosus candidate genes in the Italian population: evidence for a significant association with interleukin-10 [published erratum appears in Arthritis Rheum 2000, 43:1442]. Arthritis Rheum 2000, 43:120–128.

    Article  PubMed  CAS  Google Scholar 

  41. Dijstelbloem HM, Bijl M, Fijnheer R, et al.: Fc gamma receptor polymorphisms in systemic lupus erythematosus: association with disease and in vivo clearance of immune complexes. Arthritis Rheum 2000, 43:2793–2800.

    Article  PubMed  CAS  Google Scholar 

  42. Koene HR, Kleijer M, Swaak AJ, et al.: The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 1998, 41:1813–1818.

    Article  PubMed  CAS  Google Scholar 

  43. Manger K, Repp R, Spriewald BM, et al.: Fcg receptor IIa polymorphism in Caucasian patients with systemic lupus erythematosus: association with clinical symptoms. Arthritis Rheum 1998, 41:1181–1189.

    Article  PubMed  CAS  Google Scholar 

  44. Salmon JE, Ng S, Yoo DH, et al.: Altered distribution of Fcgamma receptor IIIA alleles in a cohort of Korean patients with lupus nephritis. Arthritis Rheum 1999, 42:818–819.

    Article  PubMed  CAS  Google Scholar 

  45. Haseley LA, Wisnieski JJ, Denburg MR, et al.: Antibodies to C1q in systemic lupus erythematosus: characteristics and relation to Fc gamma RIIA alleles. Kidney Int 1997, 52:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  46. Norsworthy P, Theodoridis E, Botto M, et al.: Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 1999, 42:1828–1832.

    Article  PubMed  CAS  Google Scholar 

  47. Wu J, Edberg JC, Redecha PB, et al.: A novel polymorphism of FcψRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997, 100:1059–1070.

    PubMed  CAS  Google Scholar 

  48. Oh M, Petri MA, Kim NA, Sullivan KE: Frequency of the Fc gamma RIIIA-158F allele in African American patients with systemic lupus erythematosus. J Rheumatol 1999, 26:1486–1489.

    PubMed  CAS  Google Scholar 

  49. Seligman VASC, Lum R, Inda SE, et al.: The Fcgamma receptor IIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis Rheum 2001, 44:618–625.

    Article  PubMed  CAS  Google Scholar 

  50. Hatta Y, Tsuchiya N, Ohashi J, et al.: Association of Fc gamma receptor III B polymorphism with SLE. Genes Immun 1999, 1:53–60.

    Article  PubMed  CAS  Google Scholar 

  51. Clynes R, Dumitru C, Ravetch JV: Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998, 279:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  52. Park SY, Ueda S, Ohno H, et al.: Resistance of Fc receptor- deficient mice to fatal glomerulonephritis. J Clin Invest 1998, 102:1229–1238.

    PubMed  CAS  Google Scholar 

  53. Eskdale J, Gallagher G, Verweij CL, et al.: Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci U S A 1998, 95:9465–9470.

    Article  PubMed  CAS  Google Scholar 

  54. Mehrian R, Quismorio FPJ, Strassmann G, et al.: Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to systemic lupus erythematosus. Arthritis Rheum 1998, 41:596–602.

    Article  PubMed  CAS  Google Scholar 

  55. Lazarus M, Hajeer AH, Turner D, et al.: Genetic variation in the interleukin 10 gene promoter and systemic lupus erythematosus. J Rheumatol 1997, 24:2314–2317.

    PubMed  CAS  Google Scholar 

  56. Mok CC, Lanchbury JS, Chan DW, Lau CS: Interleukin-10 promoter polymorphisms in Southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum 1998, 41:1090–1095.

    Article  PubMed  CAS  Google Scholar 

  57. Gibson AW, Edberg JC, Wu J, et al.: Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 2001, 166:3915–3922.

    PubMed  CAS  Google Scholar 

  58. Stevens A, Ray D, Alansari A, et al.: Characterization of a prolactin gene polymorphism and its associations with systemic lupus erythematosus. Arthritis Rheum 2001, 44:2358–2366.

    Article  PubMed  CAS  Google Scholar 

  59. Tassiulas IO, Aksentijevich I, Salmon JE, et al.: Angiotensin I converting enzyme gene polymorphisms in systemic lupus erythematosus: decreased prevalence of DD genotype in African American patients. Clin Nephrol 1998, 50:8–13.

    PubMed  CAS  Google Scholar 

  60. Sato H, Akai Y, Iwano M, et al.: Association of an insertion polymorphism of angiotensin-converting enzyme gene with the activity of systemic lupus erythematosus. Lupus 1998, 7:530–534.

    Article  PubMed  CAS  Google Scholar 

  61. Akai Y, Sato H, Iwano M, et al.: Association of an insertion polymorphism of angiotensin-converting enzyme gene with the activity of lupus nephritis. Clin Nephrol 1999, 51:141–146.

    PubMed  CAS  Google Scholar 

  62. Pullmann RJr, Lukac J, Skerenova M, et al.: Association between systemic lupus erythematosus and insertion/ deletion polymorphism of the angiotensin converting enzyme (ACE) gene. Clin Exp Rheumatol 1999, 17:593–596.

    PubMed  Google Scholar 

  63. Molad Y, Gal E, Magal N, et al.: Renal outcome and vascular morbidity in systemic lupus erythematosus (SLE): lack of association with the angiotensin-converting enzyme gene polymorphism. Semin Arthritis Rheum 2000, 30:132–137.

    Article  PubMed  CAS  Google Scholar 

  64. Kaufman KM, Kelly J, Gray-McGuire C, et al.: Linkage analysis of angiotensin-converting enzyme (ACE) insertion/deletion polymorphism and systemic lupus erythematosus. Mol Cell Endocrinol 2001, 177:81–85.

    Article  PubMed  CAS  Google Scholar 

  65. Tsao BP, Cantor RM, Kalunian KC, et al.: Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997, 99:725–731.

    PubMed  CAS  Google Scholar 

  66. Gaffney PM, Ortmann WA, Selby SA, et al.: Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sibpair families. Am J Hum Genet 2000, 66:547–556.

    Article  PubMed  CAS  Google Scholar 

  67. Lindqvist AK, Steinsson K, Johanneson B, et al.: A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000, 14:169–178.

    Article  PubMed  CAS  Google Scholar 

  68. Moser KL, Neas BR, Salmon JE, et al.: Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci U S A 1998, 95:14869–14874.

    Article  PubMed  CAS  Google Scholar 

  69. Gray-McGuire C, Moser KL, Gaffney PM, et al.: Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2. Am J Hum Genet 2000, 67:1460–1469.

    Article  PubMed  CAS  Google Scholar 

  70. Kruglyak L, Lander ES: Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996, 58:1347–1363.

    PubMed  CAS  Google Scholar 

  71. Lindquist A-K, Steinsson K, Kristjansdottir H, et al.: Complete genome scan on Icelandic multicase families with systemic lupus erythematosus. Lupus 1998, 7(suppl):11.

    Google Scholar 

  72. Lander ES, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995, 11:241–247.

    Article  PubMed  CAS  Google Scholar 

  73. Roberts SB, MacLean CJ, Neale MC, et al.: Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999, 65:876–884.

    Article  PubMed  CAS  Google Scholar 

  74. Xu J, Wiesch DG, Taylor EW, Meyers DA: Evaluation of replication studies, combined data analysis, and analytical methods in complex diseases. Genet Epidemiol 1999, 17:S773-S778.

    PubMed  Google Scholar 

  75. Moser KL, Gray-McGuire C, Kelly J, et al.: Confirmation of genetic linkage between human systemic lupus erythematosus and chromosome 1q41. Arthritis Rheum 1999, 42:1902–1907.

    Article  PubMed  CAS  Google Scholar 

  76. Tsao BP, Cantor RM, Grossman JM, et al.: PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J Clin Invest 1999, 103:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  77. Hugot JP, Chamaillard M, Zouali H, et al.: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  78. Miceli-Richard C, Lesage S, Rybojad M, et al.: CARD15 mutations in Blau syndrome. Nat Genet 2001, 29:19–20.

    Article  PubMed  CAS  Google Scholar 

  79. Takeuchi T, Tsuzaka K, Pang M, et al.: TCR zeta chain lacking exon 7 in two patients with systemic lupus erythematosus. Int Immunol 1998, 10:911–921.

    Article  PubMed  CAS  Google Scholar 

  80. Tsuzaka K, Takeuchi T, Onoda N, et al.: Mutations in T cell receptor zeta chain mRNA of peripheral T cells from systemic lupus erythematosus patients. J Autoimmun 1998, 11:381–385.

    Article  PubMed  CAS  Google Scholar 

  81. Wu J, Edberg JC, Gibson AW, et al.: Single-nucleotide polymorphisms of T cell receptor zeta chain in patients with systemic lupus erythematosus. Arthritis Rheum 1999, 42:2601–2605.

    Article  PubMed  CAS  Google Scholar 

  82. Tan FK, Reveille JD, Arnett FC, et al.: Poly(ADP)-ribose polymerase and susceptibility to systemic lupus erythematosus and primary antiphospholipid syndrome: comment on the article by Delrieu et al. [letter]. Arthritis Rheum 2000, 43:1421–1423.

    Article  PubMed  CAS  Google Scholar 

  83. Boorboor P, Drescher BE, Hartung K, et al.: Poly(ADP-ribose) polymerase polymorphisms are not a genetic risk factor for systemic lupus erythematosus in German Caucasians. J Rheumatol 2000, 27:2061.

    PubMed  CAS  Google Scholar 

  84. Criswell LA, Moser KL, Gaffney PM, et al.: PARP alleles and SLE: failure to confirm association with disease susceptibility. J Clin Invest 2000, 105:1501–1502.

    PubMed  CAS  Google Scholar 

  85. Delrieu O, Michel M, Frances C, et al.: Poly(ADP-ribose) polymerase alleles in French Caucasians are associated neither with lupus nor with primary antiphospholipid syndrome. GRAID Research Group. Group for Research on Auto- Immune Disorders. Arthritis Rheum 1999, 42:2194–2197.

    Article  PubMed  CAS  Google Scholar 

  86. Graham RR, Langefeld CD, Gaffney PM, et al.: Genetic linkage and transmission disequilibrium of marker haplotypes at chromosome 1q41 in human systemic lupus erythematosus. Arthritis Res 2001, 3:299–305.

    Article  PubMed  CAS  Google Scholar 

  87. Magnusson V, Lindqvist AK, Castillejo-Lopez C, et al.: Fine mapping of the SLEB2 locus involved in susceptibility to systemic lupus erythematosus. Genomics 2000, 70:307–314.

    Article  PubMed  CAS  Google Scholar 

  88. Hogarth MB, Slingsby JH, Allen PJ, et al.: Multiple lupus susceptibility loci map to chromosome 1 in BXSB mice. J Immunol 1998, 161:2753–2761.

    PubMed  CAS  Google Scholar 

  89. Kono DH, Burlingame RW, Owens DG, et al.: Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci U S A 1994, 91:10168–10172.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsao, B.P. An update on genetic studies of systemic lupus erythematosus. Curr Rheumatol Rep 4, 359–367 (2002). https://doi.org/10.1007/s11926-002-0046-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0046-5

Keywords

Navigation