Skip to main content

Advertisement

Log in

Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this study is to clarify the difference of F-18 FDG uptake kinetics between FDG-avid non-small-cell lung cancer (NSCLC) and benign lesions associated with various etiologies on dual-time point PET/CT scan, and to determine the optimal parameter for differentiation.

Materials and methods

The materials were 76 FDG-avid solitary NSCLC in 76 patients and 57 FDG-avid solitary benign lesions associated with various etiologies in 61 patients. FDG PET/CT scan was performed at 60 and 120 min after intravenous injection of 4.4 MBq/kg F-18 FDG. The maximum standardized uptake value (SUVmax) on early and delayed scans and the percent change of SUVmax (%ΔSUVmax) between the two time points were measured. The optimal differential parameter was determined by receiver-operating characteristic curve analysis and evaluation of diagnostic accuracy.

Results

The mean ± SD of early SUV max, delayed SUVmax and %ΔSUVmax were 8.3 ± 5.2, and 10.2 ± 6.5, and 21.9% ± 18.9 in FDG-avid NSCLC, and 3.8 ± 3.2, 4.0 ± 3.7, and 11.3% ± 26.0 in FDG-avid benign lesions, respectively. Delayed SUVmax in NSCLC was significantly higher than early SUVmax (P < 0.0001); while not different in benign lesions. Percent change of SUVmax in NSCLC was also significantly higher than that in benign lesions (P < 0.01). The optimal parameter for the differentiation was delayed SUVmax > 5.5 and yielded sensitivity of 77.6%, specificity of 80.7% and accuracy of 78.9%, which provided better differentiation than the use of %ΔSUVmax or the traditional parameter of early SUVmax > 2.5. However, 11 (19.2%) benign lesions were indistinguishable from NSCLC.

Conclusion

Although delayed PET/CT scan enhances the difference of FDG uptake between FDG-avid NSCLC and benign lesions, and the use of delayed SUVmax > 5.5 appears to improve the differentiation of these hypermetabolic lesions compared with an early scan, careful interpretation and management for correct differentiation are still required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shulkin AN. Management of the indeterminate solitary pulmonary nodule: a co-operative study. Ann Thorac Surg. 1993;56:743–4.

    Article  PubMed  CAS  Google Scholar 

  2. Odell MJ, Reid KR. Does percutaneous fine-needle aspiration biopsy aid in the diagnosis and surgical management of lung masses? Can J Surg. 1999;42:297–301.

    PubMed  CAS  Google Scholar 

  3. Tsukada H, Satou T, Iwashima A, Souma T. Diagnostic accuracy of CT-guided automated needle biopsy of lung nodules. Am J Roentgenol. 2000;175:239–43.

    CAS  Google Scholar 

  4. Dewan NA, Reeb SD, Gupta NC, Gobar LS, Scott WJ. PET-FDG imaging and transthoracic needle lung aspiration biopsy in evaluation of pulmonary lesions. A comparative risk-benefit analysis. Chest. 1995;108:441–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.

    Article  PubMed  CAS  Google Scholar 

  6. Schrevens L, Lorent N, Dooms C, Vansteenkiste J. The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer. Oncologist. 2004;9:633–43.

    Article  PubMed  Google Scholar 

  7. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.

    PubMed  CAS  Google Scholar 

  8. Fischer BM, Mortensen J, Hojgaard L. Positron emission tomography in the diagnosis and staging of lung cancer: a systematic, quantitative review. Lancet Oncol. 2001;2:659–66.

    Article  PubMed  CAS  Google Scholar 

  9. Mavi A, Lakhani P, Zhuang H, Gupta NC, Alavi A. Fluorodeoxyglucose-PET in characterizing solitary pulmonary nodules, assessing pleural diseases, and the initial staging, restaging, therapy planning, and monitoring response of lung cancer. Radiol Clin North Am. 2005;43:1–21.

    Article  PubMed  Google Scholar 

  10. Shon IH, O’doherty MJ, Maisey MN. Positron emission tomography in lung cancer. Semin Nucl Med. 2002;32:240–71.

    Article  PubMed  Google Scholar 

  11. Bunyaviroch T, Coleman RE. PET evaluation of lung cancer. J Nucl Med. 2006;47:451–69.

    PubMed  Google Scholar 

  12. Pitman AG, Hicks RJ, Binns DS, Ware RE, Kalff V, McKenzie AF, et al. Positron emission tomography in pulmonary masses where tissue diagnosis is unhelpful or not possible. Med J Aust. 2001;175:303–7.

    PubMed  CAS  Google Scholar 

  13. Fletcher JW, Djulbegovic B, Soares HP, Barry A, Siegel BA, Lowe VJ, et al. Recommendations on the Use of 18F-FDG PET in Oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  14. Blodgett T, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology. 2007;242:360–85.

    Article  PubMed  Google Scholar 

  15. Bury T, Dowlati A, Paulus P, Corhay JL, Benoit T, Kayembe JM, et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging. Eur Respir J. 1996;9:410–4.

    Article  PubMed  CAS  Google Scholar 

  16. Alavi A, Gupta N, Alberini JL, Hickeson M, Adam LE, Bhargava P, et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med. 2002;32:293–321.

    Article  PubMed  Google Scholar 

  17. Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med. 1998;28:352–8.

    Article  PubMed  CAS  Google Scholar 

  18. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.

    PubMed  CAS  Google Scholar 

  19. Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR. The value of dual time point 18F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol. 2008;63:756–64.

    Article  PubMed  Google Scholar 

  20. Goo JM, Im JG, Do KH, Yeo JS, Seo JB, Kim HY, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000;216:117–21.

    PubMed  CAS  Google Scholar 

  21. Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z. F-18 fluorode-oxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med. 2000;25:273–8.

    Article  PubMed  CAS  Google Scholar 

  22. Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med. 1994;21:297–305.

    Article  PubMed  CAS  Google Scholar 

  23. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshina S, et al. 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med. 2003;44:540–8.

    PubMed  CAS  Google Scholar 

  24. Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2008;35:246–52.

    Article  PubMed  Google Scholar 

  25. Lowe VJ, DeLong DM, Hoffman JM, Coleman RE. Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J Nucl Med. 1995;36:883–7.

    PubMed  CAS  Google Scholar 

  26. Xiu Y, Bhutani C, Dhurairaj T, Yu JQ, Dadparvar S, Reddy S, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med. 2007;32:101–5.

    Article  PubMed  Google Scholar 

  27. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.

    PubMed  Google Scholar 

  28. Conrad GR, Sinha P. Narrow time window dual-point 18F-FDG PET for the diagnosis of thoracic malignancy. Nucl Med Commun. 2003;24:1129–37.

    Article  PubMed  CAS  Google Scholar 

  29. Chen CJ, Lee BF, Yao WJ, Cheng L, Wu PS, Chu CL, et al. Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR Am J Roentgenol. 2008;191:475–9.

    Article  PubMed  Google Scholar 

  30. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med. 1990;31:1927–32.

    PubMed  CAS  Google Scholar 

  31. Beuthien-Baumann B, Hamacher K, Oberdorfer F, Steinbach J. Preparation of fluorine-18 labelled sugars and derivatives and their application as tracer for positron-emission-tomography. Carbohydr Res. 2000;327:107–18.

    Article  PubMed  CAS  Google Scholar 

  32. Browne J, De Pierro A. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15:687–99.

    Article  PubMed  CAS  Google Scholar 

  33. Núñez R, Kalapparambath A, Varela J. Improvement in sensitivity with delayed imaging of pulmonary lesions with FDG-PET. Rev Esp Med Nucl. 2007;26:196–207.

    Article  PubMed  Google Scholar 

  34. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33:1972–80.

    PubMed  CAS  Google Scholar 

  35. Hubner KF, Buonocore E, Gould HR, Thie J, Smith GT, Stephens S, et al. Differentiating benign from malignant lung lesions using “quantitative” parameters of FDG PET images. Clin Nucl Med. 1996;21:941–9.

    Article  PubMed  CAS  Google Scholar 

  36. Tsushima Y, Tateishi U, Uno H, Takeuchi M, Terauchi T, Goya T, et al. Diagnostic performance of PET/CT in differentiation of malignant and benign non-solid solitary pulmonary nodules. Ann Nucl Med. 2008;22:571–7.

    Article  PubMed  Google Scholar 

  37. Higashi K, Ueda Y, Seki H, Yuasa K, Oguchi M, Noguchi T, et al. Fluorine-18-FDG PET imaging is negative in bronchioalveolar carcinoma. J Nucl Med. 1998;39:1016–20.

    PubMed  CAS  Google Scholar 

  38. Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82:1016–20.

    Article  PubMed  Google Scholar 

  39. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in head and neck. Eur J Nucl Med. 1999;26:1345–8.

    Article  PubMed  CAS  Google Scholar 

  40. Uesaka D, Demura Y, Ishizaki T, Ameshima S, Miyamori I, Sasaki M, et al. Evaluation of dual-time-point 18F-FDG PET for staging in patients with lung cancer. J Nucl Med. 2008;49:1606–12.

    Article  PubMed  Google Scholar 

  41. Mavi A, Urhan M, Yu JQ, Zhuang H, Houseni M, Cermik TF, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med. 2006;47:1440–6.

    PubMed  Google Scholar 

  42. Torizuka T, Zasadny KR, Recker B, Wahl RL. Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology. 1998;207:767–74.

    PubMed  CAS  Google Scholar 

  43. Fin L, Daouk J, Morvan J, Bailly P, Esper I, Saidi L, et al. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions. Eur J Nucl Med Mol Imaging. 2008;35:1971–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Suga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suga, K., Kawakami, Y., Hiyama, A. et al. Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions. Ann Nucl Med 23, 427–435 (2009). https://doi.org/10.1007/s12149-009-0260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-009-0260-6

Keywords

Navigation