Elsevier

Methods in Enzymology

Volume 133, 1986, Pages 449-493
Methods in Enzymology

[36] Phagocytic leukocyte oxygenation activities and chemiluminescence: A kinetic approach to analysis

https://doi.org/10.1016/0076-6879(86)33085-4Get rights and content

Publisher Summary

This chapter discusses a kinetic approach to analysis of phagocytic leukocyte oxygenation activities and chemiluminescence. Chemiluminescence (CL) is an energy product of phagocyte oxygenation activity. Measurement of this luminescence is nondestructive and allows continuous monitoring of phagocyte oxygenation activity. As an end product of the microbe-humoral-phagocyte interaction, phagocyte luminescence may also be used for assessing the functional interrelationships of the various reacting components. For example, when stimulus is not limiting, CL is proportional to the functional capacity of the phagocytes present. Likewise, if the number of phagocytes is not limiting, microbe opsonification kinetics can be studied as the rate of stimulated phagocyte oxygenation activity yielding CL. Thus, the CL approach can provide an in vitro model system for analysis of the humoral immune mechanisms. Both native CL and chemiluminigenic probe-dependent CL techniques are successfully employed for assessment of PMNL and monocyte-macrophage oxygenation activities in a number of laboratories.

References (99)

  • R.C. Allen et al.

    Biochem. Biophys. Res. Commun.

    (1972)
  • W.H. Koppenol et al.

    FEBS Lett.

    (1977)
  • J.M. McCord et al.

    J. Biol. Chem.

    (1969)
  • H. Rosen et al.

    J. Biol. Chem.

    (1977)
  • R.C. Allen

    Biochem. Biophys. Res. Commun.

    (1975)
  • R.C. Allen

    Biochem. Biophys. Res. Commun.

    (1975)
  • J.E. Harrison et al.

    J. Biol. Chem.

    (1976)
  • J.R. Kanofsky

    J. Biol. Chem.

    (1983)
  • A.U. Khan

    Biochem. Biophys. Res. Commun.

    (1984)
  • K.R. Kopecky
  • E.A. Chandross

    Tetrahedron Lett.

    (1963)
  • G.J. McClune et al.

    FEBS Lett.

    (1976)
  • B.B. Halliwell

    FEBS Lett.

    (1976)
  • R.M. Arneson

    Arch. Biochem. Biophys.

    (1970)
  • E.W. Kellogg et al.

    J. Biol. Chem.

    (1975)
  • R.C. Allen
  • L.R. DeChatelet et al.

    Blood

    (1976)
  • P.E. Stanley et al.

    Anal. Biochem.

    (1969)
  • H.H. Seliger
  • R.C. Allen et al.

    Biochem. Biophys. Res. Commun.

    (1976)
  • J.R. Totter et al.

    J. Biol. Chem.

    (1960)
  • R.C. Allen
  • A. Rigo et al.

    Biochem. Biophys. Res. Commun.

    (1977)
  • C.S. Foote et al.

    Tetrahedron Lett.

    (1972)
  • I. Fridovich
  • A.J. Sbarra et al.

    J. Biol. Chem.

    (1960)
  • F. Rossi et al.

    Res, J. Reticuloendothel. Soc.

    (1972)
  • J.A. Badwey et al.

    Annu. Rev. Biochem.

    (1980)
  • R.C. Allen
  • B.M. Babior
  • E.L. Mills et al.

    Rev. Infect. Dis.

    (1980)
  • R.C. Allen et al.

    J. Infect. Dis.

    (1977)
  • M. A. Trush, M. E. Wilson, and K. Van Dyke, this series, Vol. 57, p....
  • R.C. Allen

    Front. Biol.

    (1979)
  • V.G. Hemming et al.

    J. Clin. Invest.

    (1976)
  • R.C. Allen

    Infect. Immun.

    (1977)
  • P. Stevens et al.

    Infect. Immun.

    (1977)
  • R.C. Allen et al.

    Infect. Immun.

    (1984)
  • C.S. Via et al.

    J. Rheumatol.

    (1984)
  • P.G. Quie et al.

    Prog. Hematol.

    (1977)
  • M.H. Grieco et al.

    Immunodiagnosis for Clinicians: Interpretation of Immunoassays

    (1983)
  • F. Hund

    Z. Phys.

    (1930)
  • G. Herzberg

    Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules

    (1965)
  • K.J. Laidler

    Chemical Kinetics

    (1950)
  • S. Glasstone et al.

    The Theory of Rate Processes

    (1941)
  • H. Eyring et al.

    Basic Chemical Kinetics

    (1980)
  • E. Wigner et al.

    Z. Phys.

    (1928)
  • L. Salem

    Electrons in Chemical Reactions: First Principles

    (1982)
  • D. Behar et al.

    J. Phys. Chem.

    (1970)
  • Cited by (447)

    • Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases

      2014, Biochimica et Biophysica Acta - General Subjects
      Citation Excerpt :

      Substrates used to detect oxidants within intracellular compartments include both oxidant-sensitive and non-redox probes. Stimulated neutrophils emit light in a fashion that requires an intact NADPH oxidase and enzymatically active MPO for maximum chemiluminescence [109–111]. Many different luminescent substrates have been used to amplify the light emitted from stimulated neutrophils, including lucigenin (bis-N-methyl acridinium nitrate), luminol (5-amino-2,3-dihydro-1,4-phthalazinedione), and isoluminol (6-amino-2,3-dihydro-1,4-phthalazinedione) in order to improve detection.

    View all citing articles on Scopus
    View full text