Skip to main content
Log in

Molecular pathology of pituitary adenomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

A great deal of knowledge about anterior pituitary development, the pathogenesis of pituitary tumor and pituitary tumor progression has accumulated during the past decade. The role of multiple genes and gene products in pituitary development and the relationship of these genes to postnatal pituitary function and pituitary tumor development are being actively explored.

Recent studies indicate that genes important in pituitary development do not contribute to pituitary tumorigenesis. However, mutations and other genetic alterations in these genes often lead to pituitary hypofunction. Many oncogenes and tumor suppressor genes that contribute to pituitary tumorigenesis have been described. There is a growing body of evidence showing that cellular and molecular changes in cyclins and cyclin-dependent kinase inhibitors contribute to pituitary tumorigenesis. Finally, recent comparative genomic hybridization studies show that many more genes that are important in pituitary tumorigenesis and tumor progression have yet to bebreak discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Treier M, Gleiberman AS, O'Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG: Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12: 1691–1704, 1998

    Google Scholar 

  2. Asa SL, Ezzat S: The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19: 798–827, 1998

    Google Scholar 

  3. Farrell WE, Clayton RN: Molecular pathogenesis of pituitary tumors. Frontiers Neuroendocrinol 21: 174–198, 2000

    Google Scholar 

  4. Heaney AP, Melmed S: New pituitary oncogenes. Endocrine-Related Cancer 7: 3–15, 2000

    Google Scholar 

  5. Burrows H, Douglas K, Seasholtz A, Camper S: Geneology of anterior pituitary gland: tracing a family tree. Trends Endocrinol Metab 10: 343–352, 1999

    Google Scholar 

  6. Tremblay JJ, Lanctot C, Drouin J: The pan-pituitary activator of transcription factor Ptx1 (pituitary homeobox) acts in synergy with SF-1 and Pit-1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 12: 428–441, 1998

    Google Scholar 

  7. Gage PJ, Camper SA: Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes is a potential regulator of anterior structure formation. Hum Mol Genet 6: 457–464, 1997

    Google Scholar 

  8. Kurotani R, Tahara S, Sanno N, Teramoto A, Mellon PL, Inoue K, Yoshimura S, Osamura RY: Expression of Ptx1 in the adult rat pituitary glands and pituitary cell lines: hormone-secreting cells and folliculo-stellate cells. Cell Tissue Res 298: 55–61, 1999

    Google Scholar 

  9. Gage PJ, Brinkmeier ML, Scarlett LM, Knapp LT, Camper SA, Mahon KA: The Ames dwarf gene df is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol 10: 1570–1581, 1996

    Google Scholar 

  10. Pfäffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, van der Nat H, van den Brande JL, Rosenfeld MG, Ingraham HA: Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257: 1118–1121, 1992

    Google Scholar 

  11. Nakamura Y, Usui T, Mizuta H, Murabe H, Muro S, Suda M, Tanaka K, Tanaka I, Shimatsu A, Nakao K: Characterization of prophet of pit-1 gene expression in normal pituitary and pituitary adenomas in human. J Clin Endocrinol Metab 84: 1414–1419, 1999

    Google Scholar 

  12. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S: Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71: 1427–1433, 1990

    Google Scholar 

  13. Alexander JM, Biller BMK, Bikkal H, Zervas NT, Arnold A, Klibanski A: Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 86: 336–340, 1990

    Google Scholar 

  14. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh OY, Clark OH, Kawasaki E, Bourne HR, McCormick F: Two G protein oncogenes in human endocrine tumors. Science 249: 655–659, 1990

    Google Scholar 

  15. Spada A, Vallar L, Faglia G:Gprotein oncogenes in pituitary tumors. Trends Endocrinol Metab 3: 355–360, 1992

    Google Scholar 

  16. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Itakura M: Rare mutation of the Gs alpha-subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction - primer introduced restriction analysis. Cancer 72: 1386–1393, 1993

    Google Scholar 

  17. Yang I, Park S, Ryu M, Woo J, Kim S, Kim J, Kim Y, Choi Y: Characteristics of gsp-positive growth hormonesecreting pituitary tumors in Korean acromegalic patients. Eur J Endocrinol 134: 720–726, 1996

    Google Scholar 

  18. Berthrat J, Chanson P, Montmimy M: The cyclic adenosine 35-monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol 9: 777–783, 1995

    Google Scholar 

  19. Cai WY, Alexander JM, Headley-Whyte ET, Scheithauer BW, Jameson JL, Zervos NT, Klibanski A: Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 78: 89–93, 1994

    Google Scholar 

  20. Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D: H-ras mutations in human pituitary carcinoma metastasis. J Clin Endocrinol Metab 78: 842–846, 1994

    Google Scholar 

  21. Karger HJ, Alexander JM, Hedley-Whyte ET, Klibansky A, Jameson LJ: Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 74: 914–919, 1992

    Google Scholar 

  22. Pei L, Melmed S: Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11: 433–441, 1997

    Google Scholar 

  23. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Bronotein M, Melmed S: Pituitary tumor transforming gene expression in human pituitary adenomas. J Clin Endocrinol Metab 84: 761–767, 1999

    Google Scholar 

  24. Hunter T, Pines J: Cyclins and cancer II C cyclinDandCDK inhibitors come of age. Cell 79: 573–582, 1994

    Google Scholar 

  25. Sherr CJ: Mammalian GI cyclins. Cell 73: 1059–1065, 1993

    Google Scholar 

  26. Hibberts NA, Simpson DJ, Bicknell JE, Broone JC, Hobin PR, Clayton RN, Farrell WE: Analysis of cyclin-D1 (CCND1) allelic imbalance and over-expression in sporadic pituitary tumors. Clin Cancer Res 5: 2133–2139, 1999

    Google Scholar 

  27. Jordan S, Lidher K, Korbonits M, Lowe DG, Grossman AB: Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 143: R1–R6, 2000

    Google Scholar 

  28. Qian X, Kulig E, Jin L, Lloyd RV: Expression of D-type cyclins in normal and neoplastic rat pituitary. Endocrinology 139: 2058–2067, 1998

    Google Scholar 

  29. Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC, Doppman JL, Kim YS, Lubensky IA, Zhuang Z, Green JS, Guru SC, Manickam P, Olufemi SE, Liotta LA, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ: Germ-line mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet 6: 1169–1175, 1997

    Google Scholar 

  30. Asa SL, Somers K, Ezzat S: TheMEN-1gene is rarely downregulated in pituitary adenomas. J Clin Endocrinol Metab 83: 3210–3212, 1998

    Google Scholar 

  31. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WE, Prager D: Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors. Evidence for a chromosomal 13 tumor suppressor gene other than RB. Cancer Res 55: 644–646, 1995

    Google Scholar 

  32. Simpson DJ, Magney J, Bicknell JE, Borkan AL, McNicel AM, Clayton RN, Farrell WE: Chromosome 13q deletion mapping in pituitary tumors: infrequent loss of the retinoblastoma susceptibility gene (RB1) despite loss of RB1 protein in somatotrophinomas. Cancer Res 59: 1562–1566, 1999

    Google Scholar 

  33. Levy A, Hall S, Yendall WA, Lightman SL: p53 gene mutations in pituitary adenoma: rare events. Clin Endocrinol 41: 809–814, 1994

    Google Scholar 

  34. Herman V, Drazin NZ, Gonsky R, Melmed S: Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77: 50–55, 1993

    Google Scholar 

  35. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER: p53 expression in pituitary adenomas and carcinoma. Correlation with invasiveness and tumor growth fractions. Neurosurgery 38: 765–771, 1996

    Google Scholar 

  36. Pernicone PJ, Scheithauer BW, Sebo TJ, Kovacs KT, Horvath E, Young WF Jr, Lloyd RV, Davis DH, Guthrie BL, Schoene WC: Pituitary carcinoma. A clinicopathologic study of 15 cases. Cancer 79: 804–812, 1997

    Google Scholar 

  37. Takino H, Herman V, Weiss M, Melmed S: Purine binding factor (nm23) gene expression in pituitary tumors: markers of adenoma invasiveness. J Clin Endocrinol Metab 80: 1733–1738, 1995

    Google Scholar 

  38. Sherr CJ: Cancer cell cycles. Science 274: 1672–1677, 1996

    Google Scholar 

  39. Reed JA, Loganzo F Jr, Shea CR, Walker GJ, Flores JF, Glendening JM, Bogdany JK, Shiel MJ, Haluska FG, Fountain JW: Loss of expression of the p16/cyclindependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res 55: 2713–2718, 1995

    Google Scholar 

  40. Woloschak M, Yu A, Xiao J, Post KD: Frequent loss of the p16INK4a gene product in human pituitary tumors. Cancer Res 56: 2493–2496, 1996

    Google Scholar 

  41. Woloshak M, Yu A, Post KD: Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinogen 19: 221–224, 1997

    Google Scholar 

  42. Simpson DJ, Bicknell JE, McNicol AM, Clayton RN, Farrell WE: Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chrom Cancer 24: 328–336, 1999

    Google Scholar 

  43. Frost SJ, Simpson DJ, Clayton RN, Farrell WE:Transfection of an inducible p16/CDKN2A construct mediated reversible growth inhibition and G1 arrest in the AtT 20 pituitary tumor cell line. Mol Endocrinol 13: 1801–1810, 1999

    Google Scholar 

  44. Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW: p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 54(2): 313–323, 1999

    Google Scholar 

  45. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27kip1 deficient mice. Cell 85: 733–744, 1996

    Google Scholar 

  46. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85: 721–732, 1996

    Google Scholar 

  47. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K: Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720, 1996

    Google Scholar 

  48. Lloyd RV, Jin L, Qian X, Kulig E: Aberrant p27kip1 expression in endocrine and other tumors. Am J Pathol 150(2): 401–407, 1997

    Google Scholar 

  49. Erickson LA: p27Kip1 and other cell-cycle protein expression in normal and neoplastic endocrine tissues. Endocr Pathol 11: 109–122, 2000

    Google Scholar 

  50. Qian X, Jin L, Kulig E, Lloyd RV: DNA methylation regulates p27kip1 expression in rodent pituitary cell lines. Am J Pathol 153(5): 1475–1482, 1998

    Google Scholar 

  51. Qian X, Jin L, Grande JP, Lloyd RV: Transforming growth factor-beta and p27 expression in pituitary cells. Endocrinology 137(7): 3051–3060, 1996

    Google Scholar 

  52. Calle-Rodrigues RD, Giannini C, Scheithauer BW, Lloyd RV, Wollan PC, Kovacs KT, Stefaneanu L, Ebright AB, Abboud CF, Davis DH: Prolactinomas in male and female patients: a comparative clinicopathologic study. Mayo Clin Proc 73(11): 1046–1052, 1998

    Google Scholar 

  53. Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Young WF Jr, Lloyd RV: Transforming growth factorbeta, transforming growth factor-beta receptor and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151(2): 509-519, 1997

    Google Scholar 

  54. Qian X, Jin L, Lloyd, RV: Aberrant DNA methylation of cyclin D2 and p27 genes in rodent pituitary tumor cell lines correlates with specific gene expression. Endocr Pathol 11: 85–96, 2000

    Google Scholar 

  55. Jin L, Kulig E, Qian X, Scheithauer BW, Eberhardt NL, Lloyd RV: A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen. Endocr Pathol 9: 169–184, 1998

    Google Scholar 

  56. Lidhar K, Korbonits M, Jordan S, Khalimova Z, Kaltsas G, Lu X, Clayton RN, Jenkins PJ, Monson JP, Besser GM, Lowe DG, Grossman AG: Low expression of the cell cycle inhibitor p27kip1 in normal corticotroph cells, corticotroph tumors and malignant pituitary tumors. J Clin Endocrinol Metab 84: 3823–3830, 1999

    Google Scholar 

  57. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685, 1995

    Google Scholar 

  58. Morisaki H, Fujimoto A, Ando A, Nagata Y, Ikeda K, Nakanishi M: Cell cycle-dependent phosphorylation of p27 cyclin-dependent kinase (cdk) inhibitor by cyclin E/Cdk2. Biochem Biophy Res Commun 240: 386–390, 1997

    Google Scholar 

  59. Vlach J, Hennrecke S, Amati B: Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27kip1. EMBO J 16: 5334–5344, 1997

    Google Scholar 

  60. Patton E, Willems A, Tyers M: Combinatorial control in ubiquitin-dependent proteolysis: don't skp the F-box hypothesis. Trends Genet 14: 6–14, 1998

    Google Scholar 

  61. Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol 1: 193–198, 1999

    Google Scholar 

  62. Tomoda K, Kubota Y, Kato J: Degradation of the cyclindependent kinase inhibitor p27 is instigated by Jab1. Nature 398: 160–164, 1998

    Google Scholar 

  63. Franklin DS, Godfrey VL, Lee H, Kovales GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y: CD inhibitors p18INK4C and p27kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12: 2899–2911, 1998

    Google Scholar 

  64. Franklin D, Godfrey VL, O'Brien DP, Deng C, Xiang Y: Functional collaboration between different cyclindependent kinase inhibitors suppress tumor growth with distinct tissue specificity. Mol Cell Biol 20: 6147–6158, 2000

    Google Scholar 

  65. Farrell WE, Simpson D, Bates AS, Talbot JA, Bicknell J, Clayton RN: Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas. The deleted region involves markers outside the MTS1 and MTS2 gene. Cancer Res 57: 2703–2709, 1999

    Google Scholar 

  66. Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E: Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83: 1801–1805, 1998

    Google Scholar 

  67. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman F, Wilson CB, Feuerstein BG: Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90: 306–314, 1999

    Google Scholar 

  68. Hui AB, Pang JC, Ko CW, Ng HK: Detection of chromosomal imbalances in growth hormone-secreting pituitary tumors by comparative genomic hybridization. Hum Pathol 30: 1019–1023, 1999

    Google Scholar 

  69. Harada K, Nishizaki T, Ozaki S, Kubota H, Harada K, Okamura T, Ilo H, Sasaki K: Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Gen Cytogen 112: 38–41, 1999

    Google Scholar 

  70. Kontogeorgos G, Kopranos N: Interphase analysis of chromosome 11 in human pituitary somatotroph adenomas by direct fluorescence in situ hybridization. Endocr Pathol 7: 203–206, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, R.V. Molecular pathology of pituitary adenomas. J Neurooncol 54, 111–119 (2001). https://doi.org/10.1023/A:1012940929072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012940929072

Navigation