Skip to main content
Log in

Intraepithelial lymphocytes vs. colorectal neoplastic cells: Who is winning the apoptotic battle?

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Intraepithelial lymphocytes (IELs) and Intraepithelial apoptotic granules (AGs) are found in the vast majority of colorectal adenomas, less frequently in incipient carcinomas and occasionally in advanced colorectal carcinomas. In colorectal adenomas, the activated and cytotoxic IELs undergo apoptosis by a Fas-FasL mechanism. In advanced invasive carcinomas lacking IELs, that mechanism cannot be activated. On the other hand, the peritumoural lymphocytes which surround some advanced invasive carcinomas may abrogate to-be-metastatic tumor cells, as treated cancer patients with peritumoural lymphocytes have a better 5-years' survival than those without that peritumoural barrier. In colorectal adenomas the host reaction (IELs) dysplastic cells Fas-dependent confrontation seems to prevent rapidly proliferating adenomas from becoming rapidly invasive carcinomas, since that process takes 10 to 20 years to evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. MacCarty WG. Principles of prognosis in cancer. JAMA 1931; 96: 30–33.

    Google Scholar 

  2. Beverly P. Tumor immunology. In: Roitt I, Brostoff J, Male D, eds. Immunology, Fourth Edition. London, UK: Mosby. 1996: 20.1–20.11.

    Google Scholar 

  3. Coca S, Perez-Piqueras J, Martinez D, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997; 79: 2320–2328.

    Article  PubMed  CAS  Google Scholar 

  4. Jass JR. Lymphocytic infiltration and survival in rectal cancer. J Clin Pathol 1986; 39: 585–589.

    PubMed  CAS  Google Scholar 

  5. Rubio CA, Kato Y, Hirota T. Intraepithelial lymphocytes in flat colorectal adenomas. In Vivo (1997, in press).

  6. Svennevig JL, Lunde OC, Holter J, Björgsvik D. Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer 1984; 49: 375–377.

    PubMed  CAS  Google Scholar 

  7. Yoong KF, Adams DH. Tumour infiltrating lymphocytes: insights into tumor immunology and potential therapeutic implications. J Clin Pathol Mol Pathol 1996; 49: 256–267.

    Article  Google Scholar 

  8. Yoo YK, Heo DS, Hata K, van Thiel DH, Whiteside TL. Tumor infiltrating lymphocytes from human colonic carcinomas. Gastroenterology 1990; 98: 259–268.

    PubMed  CAS  Google Scholar 

  9. Taunk J, Roberts AI, Ebert EC. Spontaneous cytotoxicity of human intraepithelial lymphocytes against epithelial cell tumors. Gastroenterology 1992; 102: 69–75.

    PubMed  CAS  Google Scholar 

  10. Rubio CA, Söderberg G, Einhorn N. Histological and follow-up studies in cases of microinvasive carcinoma of the uterine cervix. Acta Pat Microbiol Scand 1974; 82: 397–410.

    CAS  Google Scholar 

  11. Lazenby AJ, Yardley JH, Giardello FM, Jessurum J, Bayless TM. Lymphocytic (‘microscopic’) colitis. Hum Pathol 1989; 20: 8–28.

    Article  Google Scholar 

  12. Geboes K. Collagenous and microscopic colitis: clinical importance. Netherl J Med 1994; 45: 47–51.

    CAS  Google Scholar 

  13. Fisher ER, Sharkey DA. The ultrastructure of colonic polyps and cancer with special reference to the epithelial inclusion bodies of Leuchtenberger. Cancer 1962; 15: 160–170.

    Article  PubMed  CAS  Google Scholar 

  14. Walb D, Sandritter W. Inclusion bodies in rectal polyps. Arch Pathol 1964; 78: 104–107.

    PubMed  CAS  Google Scholar 

  15. Wei YQ, Hang ZB, Liu KF. In situ observation of inflammatory tumor-cell interaction in human seminomas (germinomas). Hum Pathol 1992; 23: 421–428.

    Article  PubMed  CAS  Google Scholar 

  16. Wimmenauer S, Keller H, Rahner S, et al. Phenotypical and functional characteristics of tumor-infiltrating lymphocytes from colon carcinomas stimulated with rIL-2 and rIL-4 in vitro: comparison with lymphocytes of the normal colon mucosa and of peripheral blood. Anticancer Res 1994; 14: 963–968.

    PubMed  CAS  Google Scholar 

  17. Balch CM, Riley LB, Bae YJ, et al. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 1990; 125: 200–205.

    PubMed  CAS  Google Scholar 

  18. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–314.

    Article  PubMed  CAS  Google Scholar 

  19. Leuchtenberger C, Leuchtenberger R, Lieb E. Studies of the cytoplasmic inclusions containing desoxyribose nucleic acid (DNA) in human rectal polypoid tumors including familial hereditary type. Acta Genet 1956; 6: 291–297.

    PubMed  Google Scholar 

  20. Leuchtenberger C. Cytoplasmic ‘inclusion bodies’ containing desoxyribose nucleic acid (DNA) in cells of human rectal polyps. Lab Invest 1954; 3: 132–142.

    PubMed  CAS  Google Scholar 

  21. Rubio CA, Kumagai J, Kanamori T, Nakamura K. Apoptosis in flat neoplasias of the colorectal mucosa. In Vivo 1995; 9: 173–176.

    PubMed  CAS  Google Scholar 

  22. Rubio CA, Alm T, Aly A, Poppen B. Intraepithelial bodies in colorectal adenomas: Leuchtenberger bodies revisited. Dis Colon Rectum 119; 34: 47–50.

  23. Barth RJ, Camp B, Martuscello TA, Dain BJ, Memoli VA. The cytokine microenvironment of human colonic carcinoma. Cancer 1996; 78: 1168–1178.

    Article  PubMed  Google Scholar 

  24. Germain RN. MHC-dependant antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994; 76: 286–299.

    Article  Google Scholar 

  25. Merogi AJ, Marrogi AJ, Ramesh R, Robinsson WR, Fermin CD, Freeman SM. Tumor-host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 1997; 28: 321–330.

    Article  PubMed  CAS  Google Scholar 

  26. O'Mahony AM, O'Sullivan GC, O'Connell J, Cotter TG, Collins JK. An immune suppressive factor derived from esophageal squamous carcinoma induces apoptosis in normal and transformed cells of lymphoid lineage. J Immunol 1993; 151: 4847–4856.

    PubMed  Google Scholar 

  27. von Boehmer H. Positive selection of lymphocytes. Cell 1994; 76: 219–228.

    Article  PubMed  CAS  Google Scholar 

  28. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–1455.

    PubMed  CAS  Google Scholar 

  29. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas-ligand apoptosis as a mechanism of immune privilege. Science 1995; 270: 1189–1192.

    PubMed  CAS  Google Scholar 

  30. O'Connell J, O'Sullivan GC, Collins JK. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184: 1075–1082.

    Article  PubMed  Google Scholar 

  31. Hahne M, Rimoldi D, Scröter M, et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363–1366.

    Article  PubMed  CAS  Google Scholar 

  32. Hardwick JM, Oyler GA, Clem RJ. AARC meeting on programmed cell death. Lake George, 19–23 October 1996. Apoptosis 1996; 1: 171–174.

    Article  Google Scholar 

  33. Hayashi H, Tatebe S, Osaki M, Goto A, Susuki Y, Ito H. Expression of Fas antigen and its mediation of apoptosis in human gastric cancer cell lines. Jpn J Cancer Res 1997; 88: 49–55.

    PubMed  CAS  Google Scholar 

  34. Niehans GA, Brunner T, Frizelle SP, et al. Human lung carcinomas express Fas ligand. Cancer Res 1997; 57: 1007–1012.

    PubMed  CAS  Google Scholar 

  35. Rubio CA. Do tumor cells induce apoptosis in lymphocytes? Nature Med 1997; 3: 253–254.

    Article  PubMed  CAS  Google Scholar 

  36. Seino KI, Kayagaki N, Okumura K, Yagita H. Antitumor effect of locally produced CD95 ligand. Nature Med 1997; 3: 165–172.

    Article  PubMed  CAS  Google Scholar 

  37. Strand S, Hofmann WJ, Hug H, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells — A mechanism of immune evasion? Nature Med 1996; 2: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  38. Uslu R, Jewett A, Bonavida B. Sensitization of human ovarian tumor cells by subtopic CDDP to anti-Fas antibody-mediated cytotoxicity and apoptosis. Gynecol Oncol 1996; 62: 282–291.

    Article  PubMed  CAS  Google Scholar 

  39. Rubio CA, Rodesnjö M. Flat adenomas and flat serrated adenomas of the colorectal mucosa: differences in the pattern of cell proliferation. Jpn J Cancer Res 1995; 86: 756–760.

    PubMed  CAS  Google Scholar 

  40. Winawer SJ, Fletcher RH, Miller L, et al. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology 1997; 112: 594–642.

    Article  PubMed  CAS  Google Scholar 

  41. Svendsen LB. Congenital genetic instability in colorectal carcinomas. Danish Med Bull 1993; 40: 546–556.

    PubMed  CAS  Google Scholar 

  42. Koretz RL. Malignant polyps: are they sheep in wolves' clothing? Ann Int Med 1993; 118: 63–68.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, C.A. Intraepithelial lymphocytes vs. colorectal neoplastic cells: Who is winning the apoptotic battle?. Apoptosis 2, 489–493 (1997). https://doi.org/10.1023/A:1026430313275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026430313275

Navigation