Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis of thrombin-inhibiting heparin mimetics without side effects

Abstract

Unwanted side effects of pharmacologically active compounds can usually be eliminated by structural modifications. But the complex heterogeneous structure of the polysaccharide heparin1 has limited this approach to fragmentation, leading to slightly better-tolerated heparin preparations of low molecular mass2. Despite this improvement, heparin-induced thrombocytopaenia3 (HIT), related to an interaction with platelet factor 4 (PF4) and, to a lesser extent, haemorrhages4, remain significant side effects of heparinotherapy. Breakthroughs in oligosaccharide chemistry5 made possible the total synthesis of the pentasaccharide antithrombin-binding site of heparin6,7. This pentasaccharide represents a new family of potential antithrombotic drugs, devoid of thrombin inhibitory properties, and free of undesired interactions with blood and vessel components. To obtain more potent and well-tolerated antithrombotic drugs, we wished to synthesize heparin mimetics able to inhibit thrombin, that is, longer oligosaccharides. Like thrombin inhibition, undesired interactions are directly correlated to the charge and the size of the molecules8, so we had to design structures that were able to discriminate between thrombin and other proteins, particularly PF4. Here we describe the use of multistep converging synthesis to obtain sulphated oligosaccharides that meet these requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of factor Xa and thrombin by antithrombin and heparin.
Figure 2
Figure 3
Figure 4: Biological properties of compound 12.

Similar content being viewed by others

References

  1. Lane, D. A. & Lindahl, U. (eds) Heparin (Arnold, London, (1989).

    Google Scholar 

  2. Verstraete, M. Pharmacotherapeutic aspects of unfractionated and low molecular weight heparins. Drugs 40, 498–530 (1990).

    Article  CAS  Google Scholar 

  3. Warkentin, T. E., Chong, B. H. & Greinacher, A. Heparin-induced thrombocytopenia: Towards consensus. Thromb.. Hemost. 79, 1– 7 (1998).

    Article  CAS  Google Scholar 

  4. Thomas, D. P. Does low molecular weight heparin cause less bleeding? Thromb. Haemost. 78, 1422–1425 ( 1997).

    Article  CAS  Google Scholar 

  5. Paulsen, H. Advances in selective chemical syntheses of complex oligosaccharides. Angew. Chem. Int. Ed. Engl. 21, 155– 173 (1982).

    Article  Google Scholar 

  6. Choay, J. et al. Structure–activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa Activity. Biochem. Biophys. Res. Commun. 116, 492 (1983).

    Article  CAS  Google Scholar 

  7. van Boeckel, C. A. A. & Petitou, M. The unique antithrombin binding domain of heparin: a lead to new synthetic antithrombotics. Angew. Chem. Int. Ed. Engl. 32, 1671–1690 (1993).

    Article  Google Scholar 

  8. Casu, B. Structure and biological activity of heparin. Adv. Carbohydr. Chem. Biochem. 43, 51–134 ( 1985).

    Article  CAS  Google Scholar 

  9. Olson, S. T. & Björk, I. Regulation of thrombin activity by antithrombin and heparin. Semin. Thromb. Haemost. 20, 373–409 (1994).

    Article  CAS  Google Scholar 

  10. Grootenhuis, P. D. J., Westerduin, P., Meuleman, D., Petitou, M. & van Boeckel, C. A. A. Rational design of synthetic heparin analogues with tailor-made coagulation factor inhibitory activity. Nature Struct. Biol. 2, 736– 739 (1995).

    Article  CAS  Google Scholar 

  11. Laurent, T. C., Tengblad, A., Thunberg, L., Höök, M. & Lindahl, U. The molecular-weight-dependence of the anti-coagulant activity of heparin. Biochem. J. 175, 691–701 (1978).

    Article  CAS  Google Scholar 

  12. Oosta, G. M., Gardner, W. T., Beeler, D. L. & Rosenberg, R. D. Multiple functional domains of the heparin molecule. Proc. Natl Acad. Sci. USA 78, 829–833 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Lane, D. A., Denton, J., Flynn, A. M., Thunberg, L. & Lindahl, U. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem. J. 218, 725–732 (1984).

    Article  CAS  Google Scholar 

  14. Danielsson, A., Raub, E., Lindahl, U. & Björk, I. Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J. Biol. Chem. 261, 15467–15473 (1986).

    CAS  PubMed  Google Scholar 

  15. Basten, J. et al. Biologically active heparin-like fragments with a “non-glycosamino” glycan structure. Part 3: O -alkylated-O -sulphated pentasaccharides. Bioorg. Med. Chem. Lett. 2, 905– 910 (1992).

    Article  CAS  Google Scholar 

  16. Petitou, M. et al. Synthesis and pharmacological properties of a close analogue of an antithrombotic pentasaccharide (SR 90107A/ORG 31540). J. Med. Chem. 40, 1600–1607 (1997).

    Article  CAS  Google Scholar 

  17. Petitou, M. et al. First synthetic carbohydrates with the full anticoagulant properties of heparin. Angew. Chem. Int. Ed. Engl. 37, 3009–3014 (1998).

    Article  CAS  Google Scholar 

  18. Herbert, J.-M. et al . Biochemical and pharmacological properties of SANORG 32701. Comparison with the “synthetic pentasaccharide” (SR 90107A/ORG 31540) and standard heparin. Circ. Res. 76, 590–600 (1996).

    Article  Google Scholar 

  19. Umetsu, T. & Sanai, K. Effect of KC-6141, an anti-aggregating compound, on experimental thrombosis in rats. Thromb. Haemost. 39, 74–83 ( 1978).

    Article  CAS  Google Scholar 

  20. Jin, J. et al. The anticoagulant activation of antithrombin by heparin. Proc. Natl Acad. Sci. USA 94, 14683–14688 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Westerduin, P. et al . Feasible synthesis and biological properties of six “non-glycosamino” glycan analogues of the antithrombin III binding heparin pentasaccharide. Bioorg. Med. Chem. 2, 1267– 1280 (1994).

    Article  CAS  Google Scholar 

  22. Stubbs, M. T. & Bode, W. The clot thickens: clues provided by thrombin structure. Trends Biochem. Sci. 20, 23–28 (1995).

    Article  CAS  Google Scholar 

  23. Sache, E. et al. Studies on a highly active anticoagulant fraction of high molecular weight isolated from porcine sodium heparin. Thromb. Res. 25, 443–458 (1982).

    Article  CAS  Google Scholar 

  24. Olson, S. T., Halvorson, H. R. & Björk, I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and non-specific binding models. J. Biol. Chem. 266, 6342– 6352 (1991).

    CAS  PubMed  Google Scholar 

  25. Maccarana, M. & Lindahl, U. Mode of interaction between platelet factor 4 and heparin. Glycobiology 3, 271 –277 (1993).

    Article  CAS  Google Scholar 

  26. Atha, D. H., Lormeau, J. C., Petitou, M., Rosenberg, R. D. & Choay, J. Contribution of 3-O- and 6-O-sulfated glucosamine residues in the heparin-induced conformational change in antithrombin III. Biochemistry 26, 6454– 6461 (1987).

    Article  CAS  Google Scholar 

  27. Sheridan, D., Carter, C. & Kelton, J. G. Adiagnostic test for heparin-induced-thrombocytopenia. Blood 67, 27–30 (1986).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is part of a collaborative project between N. V. Organon and Sanofi Recherche on antithrombotic oligosaccharides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Herbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petitou, M., Hérault, JP., Bernat, A. et al. Synthesis of thrombin-inhibiting heparin mimetics without side effects . Nature 398, 417–422 (1999). https://doi.org/10.1038/18877

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18877

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing