Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor

An Erratum to this article was published on 22 January 1987

Abstract

Several observations suggest that iron is essential for the development of malaria parasites1–6 but there is evidence that the parasites in erythrocytes do not obtain iron from haemoglobin. The total haemin level in parasitized erythrocytes does not vary during parasite development7, indicating that the iron-containing moiety of haemoglobin is not detectably metabolized. Although parasite proteases can degrade the protein part of haemoglobin in red cells8,9, no parasite enzymes that degrade haemin have been identified. In mammalian cells, haemin is degraded to carbon monoxide and bilirubin by the enzyme haeme oxygenase10. This enzyme has not been found in malaria parasites11. In fact haemin has been found to be toxic to parasite carbohydrate metabolism12. Thus, iron apparently cannot be liberated from haemin and instead is sequestered in infected red cells as haemozoin, the characteristic pigment associated with malarial infection13,14. If iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes, then the parasite must synthesize its own transferrin receptor and localize it on the surface of the infected cell, because the receptors for transferrin are lost during erythrocyte maturation5,16. Our results here suggest that Plasmodium falciparum synthesizes its own transferrin receptors enabling it to take up iron from transferrin by receptor-mediated endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Masawe, A. E. J., Muindi, D. M. & Suai, G. B. R. Lancet ii, 314–317 (1974).

    Article  Google Scholar 

  2. Murray, M. S., Murray, A. B., Murray, M. B. & Murray, C. J. Br. med. J. 11, 1113–1115 (1979).

    Google Scholar 

  3. Raventos-Suarez, C., Pollack, S. & Nagel, R. L. Am. J. trop. Med. Hyg. 31, 919–922 (1982).

    Article  CAS  Google Scholar 

  4. Harvey, P. W. J., Bell, R. G. & Nesheim, M. C. Infect. Immun. 50, 932–934 (1985).

    Article  CAS  Google Scholar 

  5. Fritsch, G., Treumer, J., Spira, D. T. & Jung, A. Expl Parasitol. 60, 171–174 (1985).

    Article  CAS  Google Scholar 

  6. Pollack, S. & Fleming, J. Br. J. Haematol. 58, 289–293 (1984).

    Article  CAS  Google Scholar 

  7. Ball, E. G., McKee, R. W., Anfinsen, G. B., Cruz, W. O. & Geiman, Q. M. J. biol. Chem. 175, 547–571 (1948).

    CAS  PubMed  Google Scholar 

  8. Moulder, J. W. & Evans, E. A. J. biol. Chem. 164, 145–157 (1940).

    Google Scholar 

  9. Levy, M. R., Siddiqui, W. A. & Chou, S. C. Nature 242, 546–549 (1974).

    Article  Google Scholar 

  10. Landow, D., Callahan, Jr., E. W. & Schmid, R. J. clin. Invest. 49, 914–925 (1970).

    Article  Google Scholar 

  11. Sherman, I. W. & Tanigoshi, L. Biochemistry of Parasites (ed. Slutzley, G. M.) 137–149 (Pergamon, Oxford, 1981).

    Book  Google Scholar 

  12. Keilin, D. & Hartree, E. F. Biochem. J. 41, 403–406 (1947).

    Article  Google Scholar 

  13. Rudzinska, M. A. & Trager, W. J. Biophys. biochem. Cytol. 6, 103–112 (1952).

    Article  Google Scholar 

  14. Deegan, T. & Maegraith, B. G. Ann. trop. Med. Parasit 50, 194–211 (1956).

    Article  CAS  Google Scholar 

  15. Van Bockxmeer, F. M. & Morgan, E. H. Biochim. biophys. Acta 584, 76–83 (1979).

    Article  CAS  Google Scholar 

  16. Lodish, H. F. & Small, B. J. Cell. Biol. 65, 51–64 (1975).

    Article  CAS  Google Scholar 

  17. Bleil, J. D. & Bretscher, M. S. EMBO J. 1, 351–355 (1982).

    Article  CAS  Google Scholar 

  18. Van driel, I. R. Stearne, P. A., Greco, B., Simpson, R. J. & Goding, J. M. J. Immun. 133, 3220–3224 (1984).

    CAS  PubMed  Google Scholar 

  19. McBride, J. S., Newbold, C. I. & Anand, R. J. exp. Med. 161, 160–180 (1985).

    Article  CAS  Google Scholar 

  20. Nunez, M. T., Glass, J. & Cole, E. S. Biochem. biophys. Acta. 673, 137–146 (1981).

    Article  CAS  Google Scholar 

  21. Tung, A. S., Shyr-te, S. & Nisonoff, A. J. Immun. 116, 676–681 (1976).

    CAS  PubMed  Google Scholar 

  22. Rogers, J. & Jungery, M. (manuscript in preparation).

  23. Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. J. exp. Med. 159, 1567–1575 (1984).

    Article  CAS  Google Scholar 

  24. Schmidt-Ullrich, R., Wallach, D. F. H. & Lightholder, J. J. exp. Med. 150, 86–99 (1979).

    Article  CAS  Google Scholar 

  25. Wallach, D. F. H. & Conley, M. J. molec. Med. 2, 119–136 (1977).

    CAS  Google Scholar 

  26. Trager, W. & Jensen, J. B. Science 193, 673–675 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Reese, R. T., Langreth, S. G. & Trager, W. Bull. WHO 57 (Suppl.), 53–61 (1979).

    PubMed  Google Scholar 

  28. Bates, G. W. & Schlaback, M. R. J. biol. Chem. 250, 2177–2181 (1975).

    CAS  PubMed  Google Scholar 

  29. Markelonis, G. J. et al. J. Cell Biol. 100, 8–17 (1985).

    Article  CAS  Google Scholar 

  30. Mason, D. Y., Abdulaziz, Z., Falini, B. & Stein, H. Immunocytochemistry: Practical Applications in Pathology and Biology (eds Polak, J. M. & Van Noorden, S.) 113–118 (Wright-PSG, Bristol, 1983).

    Book  Google Scholar 

  31. Laemmli, U. K. Nature 227, 680 (1970).

    Article  ADS  CAS  Google Scholar 

  32. Burnette, W. N. Analyt. Biochem. 112, 195–203 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, M., Jungery, M. A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. Nature 324, 388–391 (1986). https://doi.org/10.1038/324388a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324388a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing