Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of transdifferentiation of pancreas to liver

Abstract

The appearance of hepatic foci in the pancreas has been described in animal experiments and in human pathology. Here we show that pancreatic cells can be converted into hepatocytes by treatment with a synthetic glucocorticoid, dexamethasone. This occurs both in a pancreatic cell line, AR42J-B13, and in organ cultures of pancreatic buds from mouse embryos. We have established several features of the mechanism behind this transdifferentiation. We show that a proportion of the hepatocytes arises directly from differentiated exocrine-like cells, with no intervening cell division. This conversion is associated with induction of the transcription factor C/EBPβ and the activation of differentiated hepatic products. Transfection of C/EBPβ into the cells can provoke transdifferentiation; conversely, a dominant-negative form of C/EBPβ can inhibit the process. These results indicate that C/EBPβ is a key component that distinguishes the liver and pancreatic programmes of differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell morphology in response to dexamethasone treatment.
Figure 2: Dexamethasone treatment results in the expression of liver markers.
Figure 3: Time courses of dexamethasone effects.
Figure 4: Do hepatocytes originate from differentiated exocrine cells or from stem cells?
Figure 5: Time course of C/EBPβ activation.
Figure 6: C/EBPβ induces transdifferentiation in AR42J-B13 cells.
Figure 7: Inhibition of transdifferentiation by LIP.
Figure 8: Hepatic transformation in pancreatic buds from mouse embryos.

Similar content being viewed by others

References

  1. Slack, J. M. W. Epithelial metaplasia and the second anatomy. Lancet 2, 268–271 (1986).

    Article  CAS  Google Scholar 

  2. Slack, J. M. W. in Oxford Textbook of Pathology (eds McGee, J. O'D., Isaacson, P. G. & Wright, N. A.) 565–568 (Oxford Univ. Press, 1992).

    Google Scholar 

  3. Okada, T. S. Transdifferentiation. Flexibility in cell differentiation (Clarendon, Oxford, 1991).

    Google Scholar 

  4. Eguchi, G. & Kodama, R. Transdifferentiation . Curr. Opin. Cell Biol. 5, 1023– 1028 (1993).

    Article  CAS  Google Scholar 

  5. Rao, M. S., Subbarao, V. & Reddy, J. K. Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion. Cell Differentiation 18, 109–117 (1986).

    Article  CAS  Google Scholar 

  6. Rao, M. S. & Reddy, J. K. Hepatic transdifferentiation in the pancreas. Semin. Cell Biol. 6, 151 –156 (1995).

    Article  CAS  Google Scholar 

  7. Dabeva, M. D. et al. Differentiation of pancreatic epithelial progenitor cells into hepatocytes. Proc. Natl Acad. Sci. USA 94, 7356–7361 (1997).

    Article  CAS  Google Scholar 

  8. Krakowski, M. L. et al. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am. J. Pathol. 154, 683–691 (1999).

    Article  CAS  Google Scholar 

  9. Wolfe-Coote, S., Louw, J., Woodroof, C. & DuToit, D. F. The non-human primate endocrine pancreas: Development, regeneration potential and metaplasia. Cell Biol. Intl 20, 95– 101 (1996).

    Article  CAS  Google Scholar 

  10. Wolf, H. K., Burchette, J. L., Garcia, J. A. & Michalopoulos, G. Exocrine pancreatic tissue in human liver: a metaplastic process? Am. J. Surg. Pathol. 14, 590–595 (1990).

    Article  CAS  Google Scholar 

  11. Zaret, K. S. Liver specification and early morphogenesis. Mech. Dev. 92, 83–88 (2000).

    Article  CAS  Google Scholar 

  12. Slack, J. M. W. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  PubMed  Google Scholar 

  13. Longnecker, D. S., Lilja, H. S., French, J. I., Kuhlmann, E. & Noll, W. Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett. 7, 197–202 (1979).

    Article  CAS  Google Scholar 

  14. Christophe, J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am. J. Physiol. 266, G963–G971 (1994).

    CAS  PubMed  Google Scholar 

  15. Mashima, H. et al. Betacellulin and Activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J. Clin. Invest. 97, 1647–1654 ( 1996).

    Article  CAS  Google Scholar 

  16. Mashima, H., Shibata, H., Mine, T. & Kojima, I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 137, 3969–3976 (1996).

    Article  CAS  Google Scholar 

  17. Logsdon, C. D., Moessner, J., William, J. A. & Goldfine, I. D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J. Cell. Biol. 100 , 1200–1208 (1985).

    Article  CAS  Google Scholar 

  18. Corish, P. & Tyler-Smith, C. Attenuation of green fluorescent protein half-like in mammalian cells. Protein Eng. 12, 1035–1040 ( 1999).

    Article  CAS  Google Scholar 

  19. Beck, C. W. & Slack, J. M. W. Gut specific expression using mammalian promoters in transgenic Xenopus laevis. Mech. Dev. 88, 221–227 ( 1999).

    Article  CAS  Google Scholar 

  20. Cereghini, S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J. 10, 267–282 ( 1996).

    Article  CAS  Google Scholar 

  21. Descombes, P. & Schibler, U. A liver-enriched and transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569–579 (1991).

    Article  CAS  Google Scholar 

  22. Darlington, G. J. Molecular mechanisms of liver development and differentiation. Curr. Opin. Cell Biol. 11, 678–682 (1999).

    Article  CAS  Google Scholar 

  23. Yeh, W.-C. et al. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9, 168–181 ( 1995).

    Article  CAS  Google Scholar 

  24. Percival, A. C. & Slack, J. M. W. Analysis of pancreatic development using a cell lineage label. Exp. Cell Res. 247, 123–132 ( 1999).

    Article  CAS  Google Scholar 

  25. Chou, J. Y., Wan, Y.-J. Y. & Sakiyama, T. Regulation of rat liver maturation in vitro by glucocorticoids. Mol. Cell. Biol. 8, 203 –209 (1988).

    Article  CAS  Google Scholar 

  26. Schmoll, D., Allan, B. B. & Burchell, A. Cloning and sequencing of 5' region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoid in H4IIE hepatoma cells. FEBS Lett. 383, 63– 66 (1996).

    Article  CAS  Google Scholar 

  27. Kamiya, A. et al. Fetal liver development requires a paracrine action of oncostatin M through gp130 signal transducer. EMBO J. 18, 2127–2136 (1999).

    Article  CAS  Google Scholar 

  28. Slack, J. M. W. Homeotic transformations in Man: implications for the mechanism of embryonic development and for the organization of epithelia. J. Theor. Biol. 114, 463–490 ( 1985).

    Article  CAS  Google Scholar 

  29. Nomura, S. et al. Clonal analysis of isolated intestinal metaplastic glands of stomach using X-linked polymorphism. Gut 42, 663–668 (1998).

    Article  CAS  Google Scholar 

  30. Rao, M. S., Yukawa, M., Omori, M., Thorgeirsson, S. S. & Reddy, J. K. Expression of transcription factors and stem cell factor precedes hepatocyte differentiation in rat pancreas. Gene Expression 6, 15–22 (1996).

    CAS  PubMed  Google Scholar 

  31. Dabeva, M. D., Hurston, E. & Sharitz, D. A. Transcription factor and liver-specific mRNA expression in facultative epithelial progenitor cells of liver and pancreas . Am. J. Pathol. 147, 1633– 1648 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Darlington, G. J. et al. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057–30060 (1998).

    Article  CAS  Google Scholar 

  33. Tanaka, T. et al. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J. 16, 7432 –7443 (1997).

    Article  CAS  Google Scholar 

  34. Diehl, A. M. Role of CCAAT/enhancer binding proteins in regulation of liver regenerative growth. J. Biol. Chem. 273, 30843– 30846 (1998).

    Article  CAS  Google Scholar 

  35. Wang, N. D. et al. Impaired energy homeostasis in C/EBP-alpha knockout mice. Science 269, 1108–1112 ( 1995).

    Article  CAS  Google Scholar 

  36. Screpanti, I. et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP-beta-deficient mice. EMBO J. 14, 1932–1941 (1995).

    Article  CAS  Google Scholar 

  37. Liu, S. et al. Targeted disruption of C/EBP beta gene results in hypoglycemia and impaired glucagon-stimulated glucose production. Diabetes 47, A295 (1998).

    Google Scholar 

  38. Rørth, P. & Montell, D. J. Drosophila C/EBP: a tissue-specific DNA-binding protein required for embryonic development . Genes Dev. 6, 2299–2311 (1992).

    Article  Google Scholar 

  39. Friedman, A. D., Landschulz, W. H. & McKnight, S. L. CCAAT enhancer binding-protein activates the promoter of the serum-albumin gene in cultured hepatoma-cells . Genes Dev. 3, 1314–1322 (1989).

    Article  CAS  Google Scholar 

  40. Umek, R. M., Friedman, A. D. & McKnight, S. L. CCAAT-enhancer binding-protein: a component of a differentiation switch. Science 251, 288 –292 (1991).

    Article  CAS  Google Scholar 

  41. Hertz, R., Magenhelm, J., Berman, I. & Bar-Tana, J. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4a. Nature 392, 512–516 ( 1998).

    Article  CAS  Google Scholar 

  42. Duncan, S. A. et al. Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc. Natl Acad. Sci. USA 91, 7598– 7602 (1994).

    Article  CAS  Google Scholar 

  43. Taraviras, S., Monaghan, A. P., Schütz, G. & Kelsey, G. Characterization of the mouse HNF-4 gene and its expression during mouse embryogenesis . Mech. Dev. 48, 67–79 (1994).

    Article  CAS  Google Scholar 

  44. Chen, W. S. et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev. 8, 2466– 2477 (1994).

    Article  CAS  Google Scholar 

  45. Li, J., Ning, G. & Duncan, S. A. Mammalian hepatocyte differentiation requires the transcription factor HNF4α. Genes Dev. 14, 464– 474 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Spath, G. F. & Weiss, M. C. Hepatocyte nuclear factor 4 expression overcomes repression of the hepatic phenotype in dedifferentiated hepatoma cells. Mol. Cell. Biol. 17, 1913 –1922 (1997).

    Article  CAS  Google Scholar 

  47. Spath, G. F. & Weiss, M. C. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J. Cell Biol. 140 , 935–946 (1998).

    Article  CAS  Google Scholar 

  48. Nagy, P., Bisgaard, H. C. & Thorgeirsson, S. S. Expression of hepatic transcription factors during liver development and oval cell differentiation. J. Cell Biol. 126, 223–233 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust and Medical Research Council for financial support. We thank Itaru Kojima for the AR42J-B13 cells, Calvin Swift for the elastase promoter plasmid, Steve McKnight for the C/EBPβ plasmid and Ueli Schibler for the CMV-LIP plasmid. We also thank Birgit Lane, Ann Burchell and Mike Coughtrie for antibodies, and U. J. Potter for help with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tosh.

Supplementary information

Figure 1

Time course of HNF4a activation in cells treated with 1 μM dexamethasone. Figure 2Translocation of HNF4a in cells with activated C/EBPβ. (PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, CN., Slack, J. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2, 879–887 (2000). https://doi.org/10.1038/35046522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing