Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mdm2 promotes the rapid degradation of p53

Abstract

The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress1. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins1,2. The Mdm2 oncoprotein is a potent inhibitor of p53 (ref. 3). Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes3,4 and to exert antiproliferative effects4–7. On the other hand, p53 activates the expression of the mdm2 gene1 in an autoregulatory feedback loop3. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects8. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gottlieb, T. & Oren, M. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287, 77–102 (1996).

    PubMed  Google Scholar 

  2. Shen, Y. & Shenk, T. E. Viruses and apoptosis. Curr. Opin. Gene. Dev. 5, 105–111 (1995).

    Article  CAS  Google Scholar 

  3. Picksley, S. M. & Lane, D. P. The p53–mdm2 autoregulatory feedback loop—a paradigm for the regulation of growth control by p53? Bioessays 15, 689–690 (1993).

    Article  CAS  Google Scholar 

  4. Chen, J. D., Lin, J. Y. & Levine, A. J. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol. Med. 1, 141–142 (1995).

    Google Scholar 

  5. Chen, C. Y. et al. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. Natl Acad. Sc. USA 91, 2684–2688 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Haupt, Y., Barak, Y. & Oren, M. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 15, 1596–1606 (1996).

    Article  CAS  Google Scholar 

  7. Chen, J. D., Wu, X., Lin, J. Y. & Levine, A. J. mdm-2 inhibitis the Gl arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16, 2445–2452 (1996).

    Article  CAS  Google Scholar 

  8. Perry, M. E., Piette, J., Zawadzki, J. A., Harvey, D. & Levine, A. J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl Acad. Sci. USA 90, 11623–11627(1993).

    Article  ADS  CAS  Google Scholar 

  9. Barak, Y., Gottlieb, E., Juven-Gershon, T. & Oren, M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 8, 1739–1749 (1994).

    Article  CAS  Google Scholar 

  10. Lin, J. Y., Chen, J. D., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  11. Hinds, P. W. et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells-a comparison of the hot spot mutant phenotype. Cell Growth Diff. 1, 571–580 (1990).

    CAS  PubMed  Google Scholar 

  12. Unger, T., Nau, M. M., Segal, S. & Minna, J. D. p53—a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11, 1383–1390 (1992).

    Article  CAS  Google Scholar 

  13. Oren, M., Reich, N. C. & Levine, A. J. Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol. Cell. Biol. 2, 443–449 (1982).

    Article  CAS  Google Scholar 

  14. Yonish-Rouach, E. et al. Induction of apoptosis by transiently transfected metabolically stable wt p53 is transformed cell lines. Cell Death Differ. 1, 39–47 (1994).

    CAS  PubMed  Google Scholar 

  15. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κBl precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  Google Scholar 

  16. Maki, C. J., Huibregtse, J. M. & Howley, P. M. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56, 2649–2654 (1996).

    CAS  PubMed  Google Scholar 

  17. Kubbutat, M. H. & Vousden, K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell. Biol. 17, 460–468 (1997).

    Article  CAS  Google Scholar 

  18. Gottlieb, E., Lindner, S. & Oren, M. Relationship of sequence-specific transactivation and p53-regulated apoptosis in interleukin 3-dependent hematopoietic cells. Cell Growth Diff. 7, 301–310 (1996).

    CAS  PubMed  Google Scholar 

  19. Lane, D. P. The regulation of p53 function: Steiner award lecture. Int. J. Cancer 57, 623–627 (1994).

    Article  CAS  Google Scholar 

  20. Bartek, J., Iggo, R., Gannon, J. & Lane, D. P. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5, 893–899 (1990).

    CAS  PubMed  Google Scholar 

  21. Martin, K. et al. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 575, 691–694 (1995).

    Article  ADS  Google Scholar 

  22. Xiao, Z. X. et al. Interaction between the retinoblastoma protein and the oncoprotein Mdm2. Nature 375,694–698 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Momand, J. & Zambetti, G. P. Analysis of the proportion of p53 bound to mdm-2 in cells with defined growth characteristics. Oncogene 12, 2279–2289 (1996).

    CAS  PubMed  Google Scholar 

  24. Kastan, M. B., Onyekwere, O., Sindransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  Google Scholar 

  25. Fiscella, M. et al. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8, 1519–1528 (1993).

    CAS  PubMed  Google Scholar 

  26. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  Google Scholar 

  27. Otto, A. & Deppert, W. Upregulation of mdm-2 expression in Meth A tumor cells tolerating wild-type p53. Oncogene 8, 2591–2603 (1993).

    CAS  PubMed  Google Scholar 

  28. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Monies de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haupt, Y., Maya, R., Kazaz, A. et al. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997). https://doi.org/10.1038/387296a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387296a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing