Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Inhibitor of Apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities

Abstract

Inhibitor of Apoptosis (IAP) proteins exert essential functions during tumorigenesis as well as treatment resistance by simultaneously blocking cell death pathways and promoting cell survival. As IAP proteins are typically aberrantly expressed in human cancers including hematological malignancies, they represent in principle promising targets for therapeutic interventions. There are currently exciting opportunities to rationally exploit the therapeutic targeting of IAP proteins for the treatment of leukemia and lymphoma. Further insights into the signaling pathways that are under the control of IAP proteins and into the specific IAP protein-dependent vulnerabilities of hematological neoplasms are expected to pave the avenue to novel treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lockshin RA, Zakeri Z . Cell death in health and disease. J Cell Mol Med 2007; 11: 1214–1224.

    PubMed  PubMed Central  Google Scholar 

  2. Reed JC, Pellecchia M . Apoptosis-based therapies for hematologic malignancies. Blood 2005; 106: 408–418.

    CAS  PubMed  Google Scholar 

  3. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    CAS  PubMed  Google Scholar 

  4. Fulda S . Tumor resistance to apoptosis. Int J Cancer 2009; 124: 511–515.

    CAS  PubMed  Google Scholar 

  5. Fulda S, Vucic D, Targeting IAP . proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11: 109–124.

    Article  CAS  PubMed  Google Scholar 

  6. Ashkenazi A . Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7: 1001–1012.

    CAS  PubMed  Google Scholar 

  7. Fulda S, Galluzzi L, Kroemer G . Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447–464.

    CAS  PubMed  Google Scholar 

  8. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135: 1311–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012 19: 107–120.

  10. Vucic D, Dixit VM, Wertz IE . Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 2011; 12: 439–452.

    CAS  PubMed  Google Scholar 

  11. Eckelman BP, Salvesen GS, Scott FL . Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 2006; 7: 988–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001; 104: 769–780.

    CAS  PubMed  Google Scholar 

  13. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001; 104: 791–800.

    CAS  PubMed  Google Scholar 

  14. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H . Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 2001; 104: 781–790.

    CAS  PubMed  Google Scholar 

  15. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    CAS  PubMed  Google Scholar 

  16. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003; 11: 519–527.

    CAS  PubMed  Google Scholar 

  17. Lu M, Lin S-C, Huang Y, Kang YJ, Rich R, Lo Y-C et al. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007; 26: 689–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA et al. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 2001; 88: 282–290.

    CAS  PubMed  Google Scholar 

  19. Lewis J, Burstein E, Reffey SB, Bratton SB, Roberts AB, Duckett CS . Uncoupling of the signaling and caspase-inhibitory properties of X-linked inhibitor of apoptosis. J Biol Chem 2004; 279: 9023–9029.

    CAS  PubMed  Google Scholar 

  20. Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS . X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem 2001; 276: 26542–26549.

    CAS  PubMed  Google Scholar 

  21. Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R . Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 2000; 275: 22064–22068.

    CAS  PubMed  Google Scholar 

  22. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    Article  CAS  PubMed  Google Scholar 

  23. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNF alpha)-induced NF-kappaB activation. J Biol Chem 2008; 283: 24295–24299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105: 11778–11783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008; 9: 1364–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008; 9: 1371–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kasof GM, Livin Gomes BC . a novel inhibitor of apoptosis protein family member. J Biol Chem 2001; 276: 3238–3246.

    Article  CAS  PubMed  Google Scholar 

  28. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM . ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 2000; 10: 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  29. Vucic D, Deshayes K, Ackerly H, Pisabarro MT, Kadkhodayan S, Fairbrother WJ et al. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem 2002; 277: 12275–12279.

    Article  CAS  PubMed  Google Scholar 

  30. Vucic D, Franklin MC, Wallweber HJA, Das K, Eckelman BP, Shin H et al. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem J 2005; 385: 11–20.

    Article  CAS  PubMed  Google Scholar 

  31. Ashhab Y, Alian A, Polliack A, Panet A, Ben Yehuda D . Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 2001; 495: 56–60.

    CAS  PubMed  Google Scholar 

  32. Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M et al. Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res 2003; 63: 6340–6349.

    CAS  PubMed  Google Scholar 

  33. Altieri DC . Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 2008; 8: 61–70.

    Article  CAS  PubMed  Google Scholar 

  34. Altieri DC . New wirings in the survivin networks. Oncogene 2008; 27: 6276–6284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  36. Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L et al. XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 2004; 5: 489–495.

    Article  CAS  PubMed  Google Scholar 

  37. Carter BZ, Kornblau SM, Tsao T, Wang RY, Schober WD, Milella M et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 2003; 102: 4179–4186.

    Article  CAS  PubMed  Google Scholar 

  38. Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ, Kim JY et al. Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J Korean Med Sci 2009; 24: 605–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, Scholz F et al. High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res 2004; 10: 3737–3744.

    Article  CAS  PubMed  Google Scholar 

  40. Hess CJ, Berkhof J, Denkers F, Ossenkoppele GJ, Schouten JP, Oudejans JJ et al. Activated intrinsic apoptosis pathway is a key related prognostic parameter in acute myeloid leukemia. J Clin Oncol 2007; 25: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  41. Luck SC, Russ AC, Botzenhardt U, Paschka P, Schlenk RF, Dohner H et al. Deregulated apoptosis signaling in core-binding factor leukemia differentiates clinically relevant, molecular marker-independent subgroups. Leukemia 2011; 25: 1728–1738.

    Article  CAS  PubMed  Google Scholar 

  42. Bullinger L, Rucker FG, Kurz S, Du J, Scholl C, Sander S et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007; 110: 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  43. Ibrahim AM, Mansour IM, Wilson MM, Mokhtar DA, Helal AM, Al Wakeel HM . Study of survivin and X-linked inhibitor of apoptosis protein (XIAP) genes in acute myeloid leukemia (AML). Lab Hematol 2012; 18: 1–10.

    Article  PubMed  Google Scholar 

  44. Pluta A, Wrzesien-Kus A, Cebula-Obrzut B, Wolska A, Szmigielska-Kaplon A, Czemerska M et al. Influence of high expression of Smac/DIABLO protein on the clinical outcome in acute myeloid leukemia patients. Leuk Res 2010; 34: 1308–1313.

    Article  CAS  PubMed  Google Scholar 

  45. El-Mesallamy HO, Hegab HM, Kamal AM . Expression of inhibitor of apoptosis protein (IAP) livin/BIRC7 in acute leukemia in adults: correlation with prognostic factors and outcome. Leuk Res 2011; 35: 1616–1622.

    Article  CAS  PubMed  Google Scholar 

  46. Choi J, Hwang YK, Sung KW, Lee SH, Yoo KH, Jung HL et al. Expression of Livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood 2007; 109: 471–477.

    Article  CAS  PubMed  Google Scholar 

  47. Hundsdoerfer P, Dietrich I, Schmelz K, Eckert C, Henze G . XIAP expression is post-transcriptionally upregulated in childhood ALL and is associated with glucocorticoid response in T-cell ALL. Pediatr Blood Cancer 2010; 55: 260–266.

    Article  PubMed  Google Scholar 

  48. Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG . A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1999; 1: 190–192.

    Article  CAS  PubMed  Google Scholar 

  49. Nakagawa Y, Hasegawa M, Kurata M, Yamamoto K, Abe S, Inoue M et al. Expression of IAP-family proteins in adult acute mixed lineage leukemia (AMLL). Am J Hematol 2005; 78: 173–180.

    Article  CAS  PubMed  Google Scholar 

  50. Waldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R . Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 2006; 107: 4491–4499.

    Article  PubMed  Google Scholar 

  51. Grzybowska-Izydorczyk O, Cebula B, Robak T, Smolewski P . Expression and prognostic significance of the inhibitor of apoptosis protein (IAP) family and its antagonists in chronic lymphocytic leukaemia. Eur J Cancer 2010; 46: 800–810.

    Article  CAS  PubMed  Google Scholar 

  52. De Graaf AO, van Krieken JH, Tonnissen E, Wissink W, van de Locht L, Overes I et al. Expression of C-IAP1, C-IAP2 and SURVIVIN discriminates different types of lymphoid malignancies. Br J Haematol 2005; 130: 852–859.

    Article  CAS  PubMed  Google Scholar 

  53. Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki de Montalk G, Davi F et al. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 2003; 101: 4598–4606.

    Article  CAS  PubMed  Google Scholar 

  54. Silva KL, Vasconcellos DV, Castro ED, Coelho AM, Linden R, Maia RC . Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia. Apoptosis 2006; 11: 277–285.

    Article  CAS  PubMed  Google Scholar 

  55. Silva KL, de Souza PS, Nestal de Moraes G, Moellmann-Coelho A, Vasconcelos Fda C, Maia RC . XIAP and P-glycoprotein co-expression is related to imatinib resistance in chronic myeloid leukemia cells. Leuk Res 2013; 37: 1350–1358.

    Article  CAS  PubMed  Google Scholar 

  56. Seca H, Lima RT, Guimaraes JE, Helena Vasconcelos M . Simultaneous targeting of P-gp and XIAP with siRNAs increases sensitivity of P-gp overexpressing CML cells to imatinib. Hematology 2011; 16: 100–108.

    Article  CAS  PubMed  Google Scholar 

  57. Quintas-Cardama A, Qiu YH, Post SM, Zhang Y, Creighton CJ, Cortes J et al. Reverse phase protein array profiling reveals distinct proteomic signatures associated with chronic myeloid leukemia progression and with chronic phase in the CD34-positive compartment. Cancer 2012; 118: 5283–5292.

    Article  CAS  PubMed  Google Scholar 

  58. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93: 3601–3609.

    CAS  PubMed  Google Scholar 

  59. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18: 5785–5794.

    Article  CAS  PubMed  Google Scholar 

  60. Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 1999; 59: 6205–6213.

    CAS  PubMed  Google Scholar 

  61. Snipas SJ, Wildfang E, Nazif T, Christensen L, Boatright KM, Bogyo M et al. Characteristics of the caspase-like catalytic domain of human paracaspase. Biol Chem 2004; 385: 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427: 167–171.

    Article  CAS  PubMed  Google Scholar 

  63. Varfolomeev E, Wayson SM, Dixit VM, Fairbrother WJ, Vucic D . The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2. J Biol Chem 2006; 281: 29022–29029.

    Article  CAS  PubMed  Google Scholar 

  64. Hussain AR, Uddin S, Ahmed M, Bu R, Ahmed SO, Abubaker J et al. Prognostic significance of XIAP expression in DLBCL and effect of its inhibition on AKT signalling. J Pathol 2010; 222: 180–190.

    Article  CAS  PubMed  Google Scholar 

  65. Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Kronke M et al. XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J Exp Med 2003; 198: 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ren Y, Akyurek N, Schlette E, Rassidakis GZ, Medeiros LJ . Expression of Smac/DIABLO in B-cell non-Hodgkin and Hodgkin lymphomas. Hum Pathol 2006; 37: 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  67. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y . Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000; 406: 855–862.

    Article  CAS  PubMed  Google Scholar 

  70. Sun H, Nikolovska-Coleska Z, Yang CY, Qian D, Lu J, Qiu S et al. Design of small-molecule peptidic and nonpeptidic Smac mimetics. Acc Chem Res 2008; 41: 1264–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 2007; 67: 11493–11498.

    Article  CAS  PubMed  Google Scholar 

  72. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    CAS  PubMed  Google Scholar 

  73. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    CAS  PubMed  Google Scholar 

  74. Sun H, Nikolovska-Coleska Z, Lu J, Meagher JL, Yang CY, Qiu S et al. Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 2007; 129: 15279–15294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. LaCasse EC, Cherton-Horvat GG, Hewitt KE, Jerome LJ, Morris SJ, Kandimalla ER et al. Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 2006; 12: 5231–5241.

    Article  CAS  PubMed  Google Scholar 

  76. Chromik J, Safferthal C, Serve H, Fulda S . Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett 2014; 344: 101–109.

    Article  CAS  PubMed  Google Scholar 

  77. Steinhart L, Belz K, Fulda S . Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 2013; 4: e802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A et al. Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 2007; 6: 1951–1961.

    Article  CAS  PubMed  Google Scholar 

  79. Weisberg E, Ray A, Barrett R, Nelson E, Christie AL, Porter D et al. Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 2010; 24: 2100–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W et al. Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 2003; 17: 2081–2089.

    Article  CAS  PubMed  Google Scholar 

  81. Carter BZ, Mak DH, Wang Z, Ma W, Mak PY, Andreeff M et al. XIAP downregulation promotes caspase-dependent inhibition of proteasome activity in AML cells. Leuk Res 2013; 37: 974–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM et al. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 2009; 113: 1710–1722.

    Article  CAS  PubMed  Google Scholar 

  83. Loeder S, Drensek A, Jeremias I, Debatin KM, Fulda S . Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int J Cancer 2010; 126: 2216–2228.

    CAS  PubMed  Google Scholar 

  84. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  PubMed  Google Scholar 

  85. Laukens B, Jennewein C, Schenk B, Vanlangenakker N, Schier A, Cristofanon S et al. Smac mimetic bypasses apoptosis resistance in FADD- or Caspase-8-Deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia 2011; 13: 971–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 2011; 18: 656–665.

    Article  CAS  PubMed  Google Scholar 

  87. Smith MA, Carol H, Evans K, Richmond J, Kang M, Reynolds CP et al. Birinapant (TL32711), a small molecule smac mimetic, induces regressions in childhood acute lymphoblastic leukemia (ALL) xenografts that express TNF{alpha} and synergizes with TNF{alpha} in vitro - a report from the Pediatric Preclinical Testing Program (PPTP). ASH Annual Meeting Abstracts 2012; 120: 3565.

    Google Scholar 

  88. Loeder S, Fakler M, Schoeneberger H, Cristofanon S, Leibacher J, Vanlangenakker N et al. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia 2012; 26: 1020–1029.

    Article  CAS  Google Scholar 

  89. Servida F, Lecis D, Scavullo C, Drago C, Seneci P, Carlo-Stella C et al. Novel second mitochondria-derived activator of caspases (Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeutic drug-induced and death receptor-mediated apoptosis. Invest New Drugs 2011; 29: 1264–1275.

    Article  CAS  PubMed  Google Scholar 

  90. Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2 L/TRAIL-induced apoptosis. Blood 2002; 99: 3419–3426.

    Article  CAS  PubMed  Google Scholar 

  91. Loeder S, Zenz T, Schnaiter A, Mertens D, Winkler D, Dohner H et al. A novel paradigm to trigger apoptosis in chronic lymphocytic leukemia. Cancer Res 2009; 69: 8977–8986.

    Article  CAS  PubMed  Google Scholar 

  92. Zenz T, Mertens D, Dohner H, Stilgenbauer S . Importance of genetics in chronic lymphocytic leukemia. Blood Rev 2011; 25: 131–137.

    Article  CAS  PubMed  Google Scholar 

  93. Frenzel LP, Patz M, Pallasch CP, Brinker R, Claasen J, Schulz A et al. Novel X-linked inhibitor of apoptosis inhibiting compound as sensitizer for TRAIL-mediated apoptosis in chronic lymphocytic leukaemia with poor prognosis. Br J Haematol 2011; 152: 191–200.

    Article  CAS  PubMed  Google Scholar 

  94. Kater AP, Dicker F, Mangiola M, Welsh K, Houghten R, Ostresh J et al. Inhibitors of XIAP sensitize CD40-activated chronic lymphocytic leukemia cells to CD95-mediated apoptosis. Blood 2005; 106: 1742–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Scavullo C, Servida F, Lecis D, Onida F, Drago C, Ferrante L et al. Single-agent Smac-mimetic compounds induce apoptosis in B chronic lymphocytic leukaemia (B-CLL). Leuk Res 2013; 37: 809–815.

    Article  CAS  PubMed  Google Scholar 

  96. Maas C, Tromp JM, van Laar J, Thijssen R, Elias JA, Malara A et al. CLL cells are resistant to smac mimetics because of an inability to form a ripoptosome complex. Cell Death Dis 2013; 4: e782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007; 109: 1220–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kashkar H, Seeger JM, Hombach A, Deggerich A, Yazdanpanah B, Utermohlen O et al. XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood 2006; 108: 3434–3440.

    Article  CAS  PubMed  Google Scholar 

  99. Schimmer AD, Estey EH, Borthakur G, Carter BZ, Schiller GJ, Tallmann MS et al. PhaseI/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol 2009; 27: 4741–4746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carter BZ, Mak DH, Morris SJ, Borthakur G, Estey E, Byrd AL et al. XIAP antisense oligonucleotide (AEG35156) achieves target knockdown and induces apoptosis preferentially in CD34+38- cells in a phase 1/2 study of patients with relapsed/refractory AML. Apoptosis 2011; 16: 67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schimmer AD, Herr W, Hanel M, Borthakur G, Frankel A, Horst HA et al. Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study. Clin Lymph Myeloma Leuk 2011; 11: 433–438.

    Article  CAS  Google Scholar 

  102. Amaravadi RK, Schilder RJ, Dy GK, Ma WW, Fetterly GJ, Weng DE et al. Phase I study of the Smac mimetic TL32711 in adult subjects with advanced solid tumors & lymphoma to evaluate safety, pharmocokinetics, pharmocodynamics and anti-tumor activity. In: Proceedings of the 102nd Annual Meeting of the American Association of Cancer Research. (2–6 April 2011; Orlando FL, USA, Abstract LB-406) 2011.

    Google Scholar 

  103. Infante JR, Dees EC, Burris HA, Zawel L, Sager JA, Stevenson C et al. A phase I study of LCL-161, an oral inhibitor, in patients with advanced cancer. In: Proceedings of the 100st Annual Meeting of the American Association for Cancer Research. (17–21 April 2010 Washington DC, USA, Abstract 2775) 2010.

    Google Scholar 

  104. Sikic BI, Eckhardt SG, Gallant G, Burris HA, Camidge DR, Covelas AD et al. Safety, pharmocokinetics (PK), and pharmacodynamics (PD) of HGS1029, an inhibitor of apoptosis protein (IAP), in patients (Pts.) with advanced solid tumors: Results of a Phase I study. J Clin Oncol (Meeting Abstracts) 2011; 29: 3008.

    Article  Google Scholar 

Download references

Acknowledgements

The expert secretarial assistance of C Hugenberg is greatly appreciated. This work has been partially supported by grants from the Deutsche Forschungsgemeinschaft, Jose Carreras-Stiftung, Wilhelm Sander-Stiftung, European Community (ApoDecide) and IUAP VII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulda.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulda, S. Inhibitor of Apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities. Leukemia 28, 1414–1422 (2014). https://doi.org/10.1038/leu.2014.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.56

This article is cited by

Search

Quick links