Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library

Abstract

To generate a stable resource from which high affinity human antibodies to any given antigen can be rapidly isolated, functional V-gene segments from 43 non-immunized human donors were used to construct a repertoire of 1.4 × 1010 single-chain Fv (scFv) fragments displayed on the surface of phage. Fragments were cloned in a phagemid vector, enabling both phage displayed and soluble scFv to be produced without subcloning. A hexahistidine tag has been incorporated to allow rapid purification of scFv by nickel chelate chromatography. This library format reduces the time needed to isolate monoclonal antibody fragments to under two weeks. All of the measured binding affinities show a Kd < 10 nM and off-rates of 10−3 to 10−4s−1, properties usually associated with antibodies from a secondary immune response. The best of these scFvs, an anti-fluorescein antibody (0.3 nM) and an antibody directed against the hapten DTPA (0.8 nM), are the first antibodies with subnanomoiar binding affinities to be isolated from a naive library. Antibodies to doxorubicin, which is both immunosuppressive and toxic, as well as a high affinity and high specificity antibody to the steroid hormone oestradiol have been isolated. This work shows that conventional hybridoma technology may be superseded by large phage libraries that are proving to be a stable and reliable source of specific, high affinity human monoclonal antibodies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Winter, G. and Milstein, C. 1991. Man-made antibodies. Nature 349: 293–9.

    Article  CAS  PubMed  Google Scholar 

  2. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. and Winter, G. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321: 522–5.

    Article  CAS  PubMed  Google Scholar 

  3. Riechmann, L., Clark, M., Waldmann, H. and Winter, G. 1988. Reshaping human antibodies for therapy. Nature 332: 323–7.

    Article  CAS  PubMed  Google Scholar 

  4. Isaacs, J., Watts, R.A., Hazleman, B.L., Hale, G., Keogan, M.T., Cobbold, S.P. and Waldmann, H. 1992. Humanised monoclonal antibody therapy for rheumatoid arthritis. Lancet 26: 748–752.

    Article  Google Scholar 

  5. McCafferty, J., Griffiths, A.D., Winter, G. and ChiswelL, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348: 552–4.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, K. and ChiswelL, D.J. 1993. Human antibody engineering. Current Opinion in Structural Biology 3: 564–571.

    Article  CAS  Google Scholar 

  7. Winter, G., Griffiths, A.D., Hawkins, R.E. and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

    Article  CAS  PubMed  Google Scholar 

  8. Marks, J.D. et al. 1991. By-passing immunization: Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Article  CAS  PubMed  Google Scholar 

  9. Griffiths, A.D. et al. 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12: 725–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perelson, A.S. and Oster, G.F. 1979. Theoretical studies of clonal selection: Minimial antibody repertoire size and reliability of self non-self discrimination. J. Theor. Biol. 81: 645–670.

    Article  CAS  PubMed  Google Scholar 

  11. De Kruif, J., BoeL, E. and Logtenberg, T. 1995. Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248: 97–105.

    Article  CAS  PubMed  Google Scholar 

  12. Marks, J.D. et al. 1992. By-passing immunization: building high affinity human antibodies by chain shuffling. Bio/Technology 10: 779–783.

    CAS  Google Scholar 

  13. Gherardi, E. and Milstein, C. 1992. Original and artificial antibodies. Nature 357: 201–202.

    Article  CAS  PubMed  Google Scholar 

  14. Waterhouse, P., Griffiths, A.D., Johnson, K.S. and Winter, G. 1993. Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Research 21: 2265–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffiths, A.D. et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. and Winter, G. 1992. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227: 776–798.

    Article  CAS  PubMed  Google Scholar 

  17. Cox, J.P.L., Tomlinson, I.M. and Winter, G. 1994. A directory of human germline Vk segments reveals a strong bias in their usage. Eur. J. Immunol. 24: 827–836.

    Article  CAS  PubMed  Google Scholar 

  18. Williams, S.C. and Winter, G. 1993. Cloning and sequencing of human immunoglobulin VI segments. Eur. J. Immunol. 23: 1456–61.

    Article  CAS  PubMed  Google Scholar 

  19. Clackson, T., Hoogenboom, H.R., Griffiths, A.D. and Winter, G. 1991. Making antibody fragments using phage display libraries. Nature 352: 624–628.

    Article  CAS  PubMed  Google Scholar 

  20. Rixon, M.W., Gourlie, B.B., Kaplan, D.A., Schlom, J. and S., M.P. 1993. Preferential use of a H chain V region in antitumour-associated glycoprotein-72 monoclonal antibodies. The Journal of Immunology 151: 6559–6568.

    CAS  PubMed  Google Scholar 

  21. Hodits, R.A. et al. 1995. An antibody fragment from a phage display library competes for ligand binding to the low density lipoprotein receptor family and inhibits rhinovirus infection. The Journal of Biological Chemistry 270: 24078–24085.

    Article  CAS  PubMed  Google Scholar 

  22. Foote, J. and Milstein, C. 1991. Kinetic maturation of an immune response. Nature 352: 530–532.

    Article  CAS  PubMed  Google Scholar 

  23. Hawkins, R.E., RusselL, S.J. and Winter, G. 1992. Selection of phage antibodies by binding affinity: mimicking affinity maturation. J. Mol. Biol. 226: 889–896.

    Article  CAS  PubMed  Google Scholar 

  24. Gram, H. et al. 1992. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89: 3576–3580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huston, J.S. et al. 1993. Medical applications of single-chain antibodies. Intern. Rev. Immunol. 10: 195–217.

    Article  CAS  Google Scholar 

  26. Bedzyk, W.D., Reinitz, D.M. and Voss, E.W. 1986. Linkage of low and high affinity anti-fluorescein idiotype families. Molec. Immunol. 23: 1319–1328.

    Article  CAS  Google Scholar 

  27. Boxer, G.M., Abassi, A.M., Pedley, R.B. and Begent, R.H. 1994. Localisation of monoclonal antibodies reacting with different epitopes on carcinoembryonic antigen (CEA)—implications for targeted therapy. Brit J. Cancer 69: 307–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chester, K.A., Begent, R.H., Robson, L., Keep, P., Pedley, R.B. et al. 1994. Phage libraries for generation of clinically useful antibodies. Lancet 343: 455–456.

    Article  CAS  PubMed  Google Scholar 

  29. Foote, J. and Eisen, H.N. 1995. Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. USA 92: 1254–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beisiegel, U., Schneider, W.J., Goldstein, J.L., Anderson, R.G. and Brown, M.S. 1981. Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor mediated endocytosis and the genetics of familial hypercholes-terolemia. J. Biol. Chem. 256: 11923–11931.

    CAS  PubMed  Google Scholar 

  31. Hawkins, R.E. and Winter, G. 1992. Cell selection strategies for making anytibod-ies from variable gene libraries: trapping the memory pool. Eur. J. Immunol. 22: 867–870.

    Article  CAS  PubMed  Google Scholar 

  32. Barbas, C.R., Bjorling, E., Chiodi, R., Dunlop, N., Cabara, D. et al. 1992. Recombinant human Fab fragments neutralize type I immunodefficiency virus in vitro . Proc. Natl. Acad. Sci. USA 89: 9339–9343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barbas, C.R., Collet, T.A., Amberg, W., Roben, P., Binley, J.M. et al. 1993. Molecular profile of an antibody response to HIV-1 as probed by combinatorial libraries. J. Mol. Biol. 230: 812–823.

    Article  CAS  PubMed  Google Scholar 

  34. Barbas, C.R., Crowe, J.E., Cabab, D., Jones, T.M., Zebedee, S.L. et al. 1992. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralise infectivity. Proc. Natl. Acad. Sci. USA 89: 10164–10168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Williamson, R.A., Burioni, R., Sanna, P.P. and Partridge, L.J. 1993. Human monoclonal antibodies against a plethora of viral pathogens from single combinatorial libraries. Proc. Natl. Acad. Sci. USA 90: 4141–4145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCafferty, J. et al. 1994. Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl. Biochem. Biotech. 47: 157–173.

    Article  CAS  Google Scholar 

  37. Huston, J.S. et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli . Proc. Natl. Acad. Sci. USA 85: 5879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munro, S. and Pelham, H.R.B. 1986. An hsp70-like protein in the ER: identity with the 78kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.

    Article  CAS  PubMed  Google Scholar 

  39. Friguet, B., Chaffotte, A.R. Djavadi-Ohaniance, L., and Goldberg, M.E. 1985. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77: 305–319.

    Article  CAS  PubMed  Google Scholar 

  40. Goldberg, M.E. and Djavadi-Ohaniance, L. 1993. Methods for measurement of antibody/antigen affinity based on ELISA and RIA. Cum Op. Immunol. 5: 278–281.

    Article  CAS  Google Scholar 

  41. Cook, G.P. et al. 1994. A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q. Nature Genet. 7: 162–168.

    Article  CAS  PubMed  Google Scholar 

  42. Tomlinson, I.M. et al. 1994. Human immunoglobulin VH and D segments on chromosomes 15q11.2 and 16p11.2. Human Molec. Genet. 3: 853–860.

    Article  CAS  Google Scholar 

  43. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. and Foeller, C. Sequences of proteins of immunological interest (U.S. Department of Health and Human Services, 1991).

  44. Chuchana, P. et al. 1990. Definition of the human immunoglobulin variable lambda (IGLV) gene subgroups. Eur. J. Immunol. 20: 1317–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, T., Williams, A., Pritchard, K. et al. Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library. Nat Biotechnol 14, 309–314 (1996). https://doi.org/10.1038/nbt0396-309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0396-309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing