Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis

Abstract

Autophagy is an evolutionarily conserved 'self-eating' process. Although the genes essential for autophagy (named Atg) have been identified in yeast, the molecular mechanism of how Atg proteins control autophagosome formation in mammalian cells remains to be elucidated. Here, we demonstrate that Bif-1 (also known as Endophilin B1) interacts with Beclin 1 through ultraviolet irradiation resistance-associated gene (UVRAG) and functions as a positive mediator of the class III PI(3) kinase (PI(3)KC3). In response to nutrient deprivation, Bif-1 localizes to autophagosomes where it colocalizes with Atg5, as well as microtubule-associated protein light chain 3 (LC3). Furthermore, loss of Bif-1 suppresses autophagosome formation. Although the SH3 domain of Bif-1 is sufficient for binding to UVRAG, both the BAR and SH3 domains are required for Bif-1 to activate PI(3)KC3 and induce autophagosome formation. We also observed that Bif-1 ablation prolongs cell survival under starvation conditions. Moreover, knockout of Bif-1 significantly enhances the development of spontaneous tumours in mice. These findings suggest that Bif-1 joins the UVRAG–Beclin 1 complex as a potential activator of autophagy and tumour suppressor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Bif-1 suppresses caspase-independent cell death induced by nutrition deprivation.
Figure 2: Inhibition of autophagy enhances caspase-3 activation, but suppresses caspase-independent cell death.
Figure 3: Loss of Bif-1 inhibits autophagy.
Figure 4: Bif-1 localizes to autophagosomes.
Figure 5: Bif-1 interacts with Beclin 1 through UVRAG.
Figure 6: Overexpression of the SH3 domain of Bif-1 but not of Endophilin A1 suppresses autophagosome formation.
Figure 7: Loss of Bif-1 suppresses PI(3)KC3 activation during nutrient starvation.
Figure 8: Knockout of Bif-1 enhances spontaneous tumorigenesis in mice.

Similar content being viewed by others

References

  1. Yoshimori, T. Autophagy: a regulated bulk degradation process inside cells. Biochem. Biophys. Res. Commun. 313, 453–458 (2004).

    Article  CAS  Google Scholar 

  2. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  Google Scholar 

  3. Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science 306, 990–995 (2004).

    Article  CAS  Google Scholar 

  4. Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumour suppressor mechanism. Oncogene 23, 2891–2906 (2004).

    Article  CAS  Google Scholar 

  5. Eskelinen, E. L. Maturation of autophagic vacuoles in mammalian cells. Autophagy 1, 1–10 (2005).

    Article  CAS  Google Scholar 

  6. Mizushima, N., Ohsumi, Y. & Yoshimori, T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421–429 (2002).

    Article  Google Scholar 

  7. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688 (2005).

    Article  CAS  Google Scholar 

  8. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  Google Scholar 

  9. Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335 (2001).

    Article  CAS  Google Scholar 

  10. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumour suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  Google Scholar 

  11. Furuya, N., Yu, J., Byfield, M., Pattingre, S. & Levine, B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumour suppressor function. Autophagy 1, 46–52 (2005).

    Article  CAS  Google Scholar 

  12. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  13. Masuda, M. et al. Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J. 25, 2889–2897 (2006).

    Article  CAS  Google Scholar 

  14. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  Google Scholar 

  15. Huttner, W. B. & Schmidt, A. Lipids, lipid modification and lipid-protein interaction in membrane budding and fission--insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 10, 543–551 (2000).

    Article  CAS  Google Scholar 

  16. Cuddeback, S. M. et al. Molecular cloning and characterization of Bif-1: a novel SH3 domain- containing protein that associates with Bax. J. Biol. Chem. 276, 20559–20565 (2001).

    Article  CAS  Google Scholar 

  17. Pierrat, B. et al. SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics 71, 222–234 (2001).

    Article  CAS  Google Scholar 

  18. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  Google Scholar 

  19. Yang, J. S. et al. Key components of the fission machinery are interchangeable. Nature Cell Biol. 8, 1376–1382 (2006).

    Article  CAS  Google Scholar 

  20. Karbowski, M., Jeong, S. Y. & Youle, R. J. Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027–1039 (2004).

    Article  CAS  Google Scholar 

  21. Takahashi, Y. et al. Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol. Cell Biol. 25, 9369–9382 (2005).

    Article  CAS  Google Scholar 

  22. Yu, L. et al. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–152 (2004).

    Article  CAS  Google Scholar 

  23. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  Google Scholar 

  24. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005).

    Article  CAS  Google Scholar 

  25. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25, 1025–1040 (2005).

    Article  CAS  Google Scholar 

  26. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  Google Scholar 

  27. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  28. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001).

    Article  CAS  Google Scholar 

  29. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biol. 8, 688–699 (2006).

    Article  CAS  Google Scholar 

  30. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  Google Scholar 

  31. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  Google Scholar 

  32. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    Article  CAS  Google Scholar 

  33. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nature Rev. Mol. Cell Biol. 2, 211–216 (2001).

    Article  CAS  Google Scholar 

  34. Lum, J. J., DeBerardinis, R. J. & Thompson, C. B. Autophagy in metazoans: cell survival in the land of plenty. Nature Rev. Mol. Cell Biol. 6, 439–448 (2005).

    Article  CAS  Google Scholar 

  35. Mathew, R. & White, E. Why sick cells produce tumors: the protective role of autophagy. Autophagy 3, 502–505 (2007).

    Article  CAS  Google Scholar 

  36. Schwarze, P. E. & Seglen, P. O. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp. Cell Res. 157, 15–28 (1985).

    Article  CAS  Google Scholar 

  37. Kisen, G. O. et al. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis 14, 2501–2505 (1993).

    Article  CAS  Google Scholar 

  38. Toth, S., Nagy, K., Palfia, Z. & Rez, G. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Cell Tissue Res. 309, 409–416 (2002).

    Article  Google Scholar 

  39. Arico, S. et al. The tumour suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246 (2001).

    Article  CAS  Google Scholar 

  40. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  Google Scholar 

  41. Inbal, B., Bialik, S., Sabanay, I., Shani, G. & Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol. 157, 455–468 (2002).

    Article  CAS  Google Scholar 

  42. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).

    Article  CAS  Google Scholar 

  43. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumour suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    Article  CAS  Google Scholar 

  44. Ionov, Y., Nowak, N., Perucho, M., Markowitz, S. & Cowell, J. K. Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability. Oncogene 23, 639–445 (2004).

    Article  CAS  Google Scholar 

  45. Balakrishnan, A. et al. Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomas. Genes Chromosomes Cancer 45, 883–892 (2006).

    Article  CAS  Google Scholar 

  46. Lee, J. W. et al. Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology 38, 312–315 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: E. Haller for assistance with electron microscopic analyses; G. Gao for statistical help; C. Meyerkord and R. Youle for critical reading of the manuscript; and D. C. S. Huang, B. Levine, N. Mizushima, G. Nolan, G. Reuther and T. Yoshimori for reagents. This work was supported by grants from the National Institutes of Health (NIH) and American Cancer Society (ACS) to H.-G.W. and fellowships from the Uehara Memorial Foundation and Japan Society for the Promotion of Science (JSPS) to Y.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gang Wang.

Supplementary information

Supplementary Title

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, Y., Coppola, D., Matsushita, N. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9, 1142–1151 (2007). https://doi.org/10.1038/ncb1634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing