Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear signalling by tumour-associated antigen EpCAM

Abstract

EpCAM was found to be overexpressed on epithelial progenitors, carcinomas and cancer-initiating cells. The role of EpCAM in proliferation, and its association with cancer is poorly explained by proposed cell adhesion functions. Here we show that regulated intramembrane proteolysis activates EpCAM as a mitogenic signal transducer in vitro and in vivo. This involves shedding of its ectodomain EpEX and nuclear translocation of its intracellular domain EpICD. Cleavage of EpCAM is sequentially catalysed by TACE and presenilin-2. Pharmacological inhibition or genetic silencing of either protease impairs growth-promoting signalling by EpCAM, which is compensated for by EpICD. Released EpICD associates with FHL2, β-catenin and Lef-1 to form a nuclear complex that contacts DNA at Lef-1 consensus sites, induces gene transcription and is oncogenic in immunodeficient mice. In patients, EpICD was found in nuclei of colon carcinoma but not of normal tissue. Nuclear signalling of EpCAM explains how EpCAM functions in cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteolytic cleavage of EpCAM in cancer cells.
Figure 2: Effect of specific protease inhibitors on EpCAM cleavage and signalling.
Figure 3: Effect of TACE and presenilin-specific siRNAs on EpCAM signalling.
Figure 4: A large nuclear complex containing EpICD.
Figure 5: EpEX as soluble ligand and inducer of EpCAM signalling.
Figure 6: EpICD is oncogenic in vivo.
Figure 7: Model of the EpCAM signalling pathway.

Similar content being viewed by others

References

  1. Gires, O. TACSTD1 (tumour-associated calcium signal transducer 1). Atlas Genet. Cytogenet. Oncol. Haematol., http://AtlasGeneticsOncology.org/Genes/TACSTD1ID42459ch2p21.html (2008).

  2. Went, P. et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br. J. Cancer 94, 128–35 (2006).

    Article  CAS  Google Scholar 

  3. Spizzo, G. et al. High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res. Treat 86, 207–213 (2004).

    Article  CAS  Google Scholar 

  4. Litvinov, S. V. et al. Epithelial cell adhesion molecule (Ep-CAM) modulates cell–cell interactions mediated by classic cadherins. J. Cell Biol. 139, 1337–1348 (1997).

    Article  CAS  Google Scholar 

  5. Munz, M. et al. The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23, 5748–5758 (2004).

    Article  Google Scholar 

  6. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  Google Scholar 

  7. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  8. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  Google Scholar 

  9. Stingl, J., Eaves, C. J., Zandieh, I. & Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat 67, 93–109 (2001).

    Article  CAS  Google Scholar 

  10. Schmelzer, E. et al. Human hepatic stem cells from fetal and postnatal donors. J. Exp. Med. 204, 1973–1987 (2007).

    Article  CAS  Google Scholar 

  11. Trzpis, M. et al. Expression of EpCAM is upregulated during regeneration of renal epithelia. J. Pathol. (2008).

  12. Ruf, P. et al. Characterisation of the new EpCAM-specific antibody HO-3: implications for trifunctional antibody immunotherapy of cancer. Br. J. Cancer (2007).

  13. Medina, M. & Dotti, C. G. RIPped out by presenilin-dependent gamma-secretase. Cell Signal. 15, 829–841 (2003).

    Article  CAS  Google Scholar 

  14. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  Google Scholar 

  15. Johannessen, M., Moller, S., Hansen, T., Moens, U. & Van Ghelue, M. c.-r. p.-p. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell. Mol. Life Sci. 63, 268–284 (2006).

    Article  CAS  Google Scholar 

  16. Li, M. et al. The four-and-a-half-LIM protein 2 (FHL2) is overexpressed in gliomas and associated with oncogenic activities. Glia 56, 1328–1338 (2008).

    Article  Google Scholar 

  17. Wang, J. et al. Suppression of FHL2 expression induces cell differentiation and inhibits gastric and colon carcinogenesis. Gastroenterology 132, 1066–1076 (2007).

    Article  CAS  Google Scholar 

  18. Wei, Y. et al. Identification of the LIM protein FHL2 as a co-activator of beta-catenin. J. Biol. Chem. 278, 5188–5194 (2003).

    Article  CAS  Google Scholar 

  19. Shtutman, M. et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999).

    Article  CAS  Google Scholar 

  20. Wolfe, M. S. & Kopan, R. Intramembrane proteolysis: theme and variations. Science 305, 1119–1123 (2004).

    Article  CAS  Google Scholar 

  21. Canault, M. et al. FHL2 interacts with both ADAM-17 and the cytoskeleton and regulates ADAM-17 localization and activity. J. Cell Physiol. (2006).

  22. Kang, D. E. et al. Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signalling receptors. Selectivity of PS2 in platelet-derived growth factor signalling. J. Biol. Chem. 280, 31537–31547 (2005).

    Article  CAS  Google Scholar 

  23. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  24. Yamashita, T., Budhu, A., Forgues, M. & Wang, X. W. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signalling in hepatocellular carcinoma. Cancer Res. 67, 10831–10839 (2007).

    Article  CAS  Google Scholar 

  25. Gavert, N. et al. L1, a novel target of beta-catenin signalling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633–642 (2005).

    Article  CAS  Google Scholar 

  26. Conacci-Sorrell, M. et al. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation. Cancer Res. 65, 11605–11612 (2005).

    Article  CAS  Google Scholar 

  27. Mumm, J. S. & Kopan, R. Notch signalling: from the outside in. Dev. Biol. 228, 151–165 (2000).

    Article  CAS  Google Scholar 

  28. Stoeck, A. et al. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem. J. 393, 609–618 (2006).

    Article  CAS  Google Scholar 

  29. Hampe, W. et al. Ectodomain shedding, translocation and synthesis of SorLA are stimulated by its ligand head activator. J. Cell Sci. 113 Pt 24, 4475–4485 (2000).

    Google Scholar 

  30. Bohm, C. et al. SorLA signalling by regulated intramembrane proteolysis. J. Biol. Chem. (2006).

  31. Taniguchi, Y., Kim, S. H. & Sisodia, S. S. Presenilin-dependent “gamma-secretase” processing of deleted in colorectal cancer (DCC). J. Biol. Chem. 278, 30425–30428 (2003).

    Article  CAS  Google Scholar 

  32. Cupers, P., Orlans, I., Craessaerts, K., Annaert, W. & De Strooper, B. The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurons in culture. J. Neurochem. 78, 1168–1178 (2001).

    Article  CAS  Google Scholar 

  33. Oberg, C. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homologue. J. Biol. Chem. 276, 35847–35853 (2001).

    Article  CAS  Google Scholar 

  34. Baeuerle, P. A. & Baltimore, D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540–546 (1988).

    Article  CAS  Google Scholar 

  35. Kenny, P. A. TACE: a new target in epidermal growth factor receptor dependent tumours. Differentiation 75, 800–808 (2007).

    Article  CAS  Google Scholar 

  36. Kenny, P. A. & Bissell, M. J. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. 117, 337–345 (2007).

    Article  CAS  Google Scholar 

  37. Selkoe, D. J. & Wolfe, M. S. Presenilin: running with scissors in the membrane. Cell 131, 215–221 (2007).

    Article  CAS  Google Scholar 

  38. Merchant, N. B. et al. TACE/ADAM-17: a component of the epidermal growth factor receptor axis and a promising therapeutic target in colorectal cancer. Clin. Cancer Res. 14, 1182–1191 (2008).

    Article  CAS  Google Scholar 

  39. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  Google Scholar 

  40. Birchmeier, W. Cell adhesion and signal transduction in cancer. Conference on cadherins, catenins and cancer. EMBO Rep. 6, 413–417 (2005).

    Article  CAS  Google Scholar 

  41. Clevers, H. Wnt/beta-catenin signalling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  Google Scholar 

  42. Anderson, R., Schaible, K., Heasman, J. & Wylie, C. Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. J. Reprod. Fertil. 116, 379–384 (1999).

    Article  CAS  Google Scholar 

  43. Stingl, J., Raouf, A., Emerman, J. T. & Eaves, C. J. Epithelial progenitors in the normal human mammary gland. J. Mammary Gland Biol. Neoplasia 10, 49–59 (2005).

    Article  Google Scholar 

  44. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  Google Scholar 

  45. Schmelzer, E., Wauthier, E. & Reid, L. M. The Phenotypes of Pluripotent Human Hepatic Progenitors. Stem Cells (2006).

  46. Baeuerle, P. A. & Gires, O. EpCAM (CD326) finding its role in cancer. Br. J. Cancer 96, 417–423 (2007).

    Article  CAS  Google Scholar 

  47. Brock, R., Hamelers, I. H. & Jovin, T. M. Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35, 353–362 (1999).

    Article  CAS  Google Scholar 

  48. Schagger, H. & von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 (1991).

    Article  CAS  Google Scholar 

  49. Gires, O., Mack, B., Rauch, J. & Matthias, C. CK8 correlates with malignancy in leukoplakia and carcinomas of the head and neck. Biochem. Biophys. Res. Commun. 343, 252–259 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work was supported by funding from the Deutsche Krebshilfe, Mildred-Scheel-Stiftung to M.M. and O.G. We are indebted to Jürgen Haas for technical help. We thank Wenlong Bai for FHL-2–GST constructs. We thank Ralf Schulz for support with in vivo fluorescence imaging. Animal experiments were conducted at the Walter Brendel Center (Director, U. Pohl).

Author information

Authors and Affiliations

Authors

Contributions

D.M. and M.M. planned the project, performed experiments and analysed the data; S.D., B.M., M.C., M.B., C.K. and P.P. performed experiments; P.W. provided material support; O.G. planned the project; P.A.B. and O.G. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Olivier Gires.

Ethics declarations

Competing interests

Markus Munz and Patrick A. Baeuerle are employees of Micromet Inc., Bethesda, Md, USA.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1662 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maetzel, D., Denzel, S., Mack, B. et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11, 162–171 (2009). https://doi.org/10.1038/ncb1824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing