Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction of FANCD2 and NBS1 in the DNA damage response

Abstract

Fanconi anaemia (FA) and Nijmegen breakage syndrome (NBS) are autosomal recessive chromosome instability syndromes with distinct clinical phenotypes. Cells from individuals affected with FA are hypersensitive to mitomycin C (MMC), and cells from those with NBS are hypersensitive to ionizing radiation. Here we report that both NBS cell lines and individuals with NBS are hypersensitive to MMC, indicating that there may be functional linkage between FA and NBS. In wild-type cells, MMC activates the colocalization of the FA subtype D2 protein (FANCD2) and NBS1 protein in subnuclear foci. Ionizing radiation activates the ataxia telangiectasia kinase (ATM)-dependent and NBS1-dependent phosphorylation of FANCD2, resulting in an S-phase checkpoint. NBS1 and FANCD2 therefore cooperate in two distinct cellular functions, one involved in the DNA crosslink response and one involved in the S-phase checkpoint response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NBS cells show MMC hypersensitivity.
Figure 2: NBS cells show increased MMC-inducible chromosome breakage.
Figure 3: The C terminus of NBS1 is required for resistance to MMC.
Figure 4: MRE11 and FANCD2 colocalize after DNA damage.
Figure 5: The C terminus of NBS1 is required for MRE11 foci.
Figure 6: The C terminus of NBS1 is not required for the S-phase checkpoint.

Similar content being viewed by others

References

  1. Khanna, K. K. et al. Cellular responses to DNA Damage and the Human Chromosome Instability Syndromes (Humana, San Diego 1998).

    Google Scholar 

  2. Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of fanconi anaemia. Nature Rev. Genet. 2, 446–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Weemaes, C. M. et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr. Scand. 70, 557–564 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Weemaes, C. M., Smeets, D. F., Horstink, M. Haraldsson, A. & Bakkeren J. A. Variants of Nijmegen breakage syndrome and ataxia telangiectasia. Immunodeficiency 4, 109–111 (1993).

    CAS  PubMed  Google Scholar 

  5. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Taniguchi, T. et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109, 459–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Grompe, M. & D'Andrea, A. Fanconi anemia and DNA repair. Hum. Mol. Genet. 10, 2253–2259 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Alter, B. P. Fanconi's anemia and malignancies. Am. J. Hematol. 53, 99–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Resnick, I. B. et al. Nijmegen breakage syndrome: Clinical characteristics and mutation analysis in eight unrelated Russian families. J. Pediatr. 140, 355–361 (2002).

    Article  PubMed  Google Scholar 

  10. Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31, 635–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bressan, D. A., Baxter, B. K. & Petrini, J. H. The Mre11–Rad50–Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 7681–7687 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, X. et al. Independence of R/M/N focus formation and the presence of intact BRCA1. Science 289, 11 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Zhong, Q. et al. Association of BRCA1 with the hRad50–hMre11–p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lim, D. S. et al. ATM phosphorylates p95/NBS1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Taniguchi, T. et al. S phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Maser, R. S., Zinkel, R. & Petrini, J. H. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nature Genet. 27, 417–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Auerbach, A. D. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol. 21, 731–733 (1993).

    CAS  PubMed  Google Scholar 

  24. Ranganathan, V. et al. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr. Biol. 11, 962–966 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Desai-Mehta, A., Cerosaletti, K. M. & Concannon, P. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol. 21, 2184–2191 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. J. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double strand breaks. Mol. Cell. Biol. 17, 6087–6096 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dolganov, G. M. et al. Human Rad50 is physically associated with hMre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16, 4832–4841 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carney, J. P. et al. The hMre11/hRad50 protein complex and nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buscemi, G. et al. Chk2 activation dependence on Nbs1 after DNA damage. Mol. Cell. Biol. 21, 5214–5222 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grenon, M., Gilbert, C. & Lowndes, N. F. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nature Cell Biol. 3, 844–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kupfer, G. et al. The Fanconi anemia protein, FAC, binds to the cyclin-dependent kinase, cdc2. Blood 90, 1047–1054 (1997).

    CAS  PubMed  Google Scholar 

  35. Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A. D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19, 4866–4873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naf, D., Kupfer, G. M., Suliman, A., Lambert, K. & D'Andrea, A. D. Functional activity of the Fanconi anemia protein, FAA, requires FAC binding and nuclear localization. Mol. Cell. Biol. 18, 5952–5960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, B., Kim, S. & Kastan, M. B. Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol. Cell. Biol. 21, 3445–3450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Y. et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood 98, 3435–3440 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. M. R. Taylor for the ATLD lymphoblasts; H. Joenje for the EUFA1020 lymphoblasts; and C. Cale and P. Telfer for clinical information. This work was supported by grants from the NIH (to A.D.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. D'Andrea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, K., Taniguchi, T., Ranganathan, V. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 4, 913–920 (2002). https://doi.org/10.1038/ncb879

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing