Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interstitial cells of Cajal generate a rhythmic pacemaker current

Abstract

Networks of interstitial cells of Cajal embedded in the musculature of the gastrointestinal tract are involved in the generation of electrical pacemaker activity for gastrointestinal motility1,2. This pacemaker activity manifests itself as rhythmic slow waves in membrane potential, and controls the frequency and propagation characteristics of gut contractile activity3–6. Mice that lack a functional Kit receptor fail to develop the network of interstitial cells of Cajal associated with Auerbach's plexus in the mouse small intestine7,8 and do not generate slow wave activity9,10. These cells could provide an essential component of slow wave activity (for example, a biochemical trigger that would be transferred to smooth muscle cells), or provide an actual pacemaker current that could initiate slow waves. Here we provide direct evidence that a single cell, identified as an interstitial cell of Cajal by light microscopy, electron microscopy and expression of Kit mRNA, generates spontaneous contractions and a rhythmic inward current that is insensitive to L-type calcium channel blockers. Identification of the pacemaker of gut motility will aid in the elucidation of the pathophysiology of intestinal motor disorders, and provide a target cell for pharmacological treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Faussone-Pellegrini, M.S., Cortesini, C. & Romagnoli, P. Sulĺultrastruttura della tunica muscolare della porzione cardiale delĺesofago e dello stomaco umano con particolare riferimento alle cosiddette cellule interstiziali di Cajal. Arch. Ital. Anat. Embriol. 82, 157–177 (1977).

    CAS  PubMed  Google Scholar 

  2. Thuneberg, L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv. Anat. Embryol. Cell Biol. 71, 1–130 (1982).

    Article  CAS  Google Scholar 

  3. Thuneberg, L. in Handbook of Physiology, the Gastrointestinal System (eds Schultz, C.S., Wood, J.D. St Rauner, B.B.) 349–386 (American Physiological Society, Bethesda, Maryland, 1989).

    Google Scholar 

  4. Sanders, K.M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492–515 (1996).

    Article  CAS  Google Scholar 

  5. Huizinga, J.D., Thuneberg, L., Vanderwinden, J.M. & Rumessen, J.J. Interstitial cells of Cajal as pharmacological targets for gastrointestinal motility disorders. Trends in Pharmacological Sciences 18, 393–403 (1997).

    Article  CAS  Google Scholar 

  6. Der-Silaphet, T.D., Malysz, J., Arsenault, A.L., Hagel, S. & Huizinga, J.D. Interstitial cells of Cajal direct normal propulsive contractile activity in the small intestine. Gastroenterology 114, 724–736 (1998).

    Article  CAS  Google Scholar 

  7. Huizinga, J.D. et al. The W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349 (1995).

    Article  CAS  Google Scholar 

  8. Ward, S.M., Burns, A.J., Torihashi, S. & Sanders, K.M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. (Lond.) 480, 91–97 (1994).

    Article  CAS  Google Scholar 

  9. Malysz, J., Thuneberg, L., Mikkelsen, H.B. & Huizinga, J.D. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal. Am. J. Physiol. 271, G387–G399 (1996).

    CAS  PubMed  Google Scholar 

  10. Huizinga, J.D., Ambrous, K. & Der-Silaphet, T.D. Cooperation between neural and myogenic mechanisms in the control of peristalsis in the small intestine: comparison between control and W mutant mice. J. Physiol. (Lond.) 506, 843–856 (1998).

    Article  CAS  Google Scholar 

  11. Lecoin, L., Cabella, C. & Le Douarin, N. Origin of the c-kit positive interstitial cells in the avian bowel. Development 122, 725–733 (1996).

    CAS  PubMed  Google Scholar 

  12. Klüppel, M., Huizinga, J.D., Malysz, J. & Bernstein, A. Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Developmental Dynamics 211, 60–71 (1998).

    Article  Google Scholar 

  13. Liu, L.W.C., Thuneberg, L. & Huizinga, J.D. Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colon pacemaker frequency. J.Pharmacol. Exp. Ther. 275, 1058–1068 (1995).

    CAS  PubMed  Google Scholar 

  14. Komuro, T. & Zhou, D.S. Anti c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine. J. Auton. Nerv.Sys. 61, 169–174 (1996).

    Article  CAS  Google Scholar 

  15. Vanderwinden, J.M. et al. Interstitial cells of Cajal in human colon and in Hirschsprung's disease. Gastroenterology 111, 901–910 (1996).

    Article  CAS  Google Scholar 

  16. Nocka, K. et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—evidence for an impaired C-kit kinase in mutant mice. Genes Dev. 3, 816–826 (1989).

    Article  CAS  Google Scholar 

  17. Ward, S.M. & Sanders, K.M. Upstroke component of electrical slow waves in canine colonic smooth muscle due to nifedipine-resistant calcium current. J. Physiol. (Lond.) 455, 321–337 (1992).

    Article  CAS  Google Scholar 

  18. Huizinga, J.D., Farraway, L. & Den Hertog, A. Generation of slow-wave-type action potentials in canine colon smooth muscle involves a non-L-type Ca2+ conductance. J. Physiol. (Lond.) 442, 15–29 (1991).

    Article  CAS  Google Scholar 

  19. Malysz, J., Richardson, D., Farraway, L., Christen, M.O & Huizinga, J.D. Generation of slow wave type action potentials in the mouse small intestine involves a non-L-type calcium channel. Can. J. Phys. Pharm. 73, 1502–1511 (1995).

    Article  CAS  Google Scholar 

  20. Tomita, T. in Smooth Muscle (ed. Bulbring, E.) 127–156 (Arnold, London, 1981).

    Google Scholar 

  21. Huizinga, J.D., Farraway, L. & Den Hertog, A. Effect of voltage and cyclic AMP on frequency of slow wave type action potentials in colonic smooth muscle. J. Physiol. (Lond.) 442, 31–45 (1991).

    Article  CAS  Google Scholar 

  22. Lee, H.K. & Sanders, K.M. Comparison of ionic currents from interstitial cells and smooth muscle cells of canine colon. J. Physiol. (Lond.) 460, 135–152 (1993).

    Article  CAS  Google Scholar 

  23. Tokutake, N. et al. Rhythmic Cl- current and physiological roles of the intestinal c-kit positive cells. Pflügers Arch. 431, 169–177 (1995).

    Article  Google Scholar 

  24. Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor sub-units expressed by single Purkinje cells. Neuron 9, 247–258 (1992).

    Article  CAS  Google Scholar 

  25. Gokkel, E. et al. Structural organization of the murine c-kit proto-oncogene. Oncogene 7, 1423–1429 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, L., Robinson, T., Lee, J. et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4, 848–851 (1998). https://doi.org/10.1038/nm0798-848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0798-848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing