Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biallelic mutations in the ATM gene in T-prolymphocytic leukemia

Abstract

Ataxia-telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immune deficiency, genome instability and predisposition to malignancies, particularly T-cell neoplasms1–3. The responsible gene, designated ataxia-telangiectasia mutated (ATM), was recently identified by positional cloning in the chromosomal region 11q22.3–23.1 (ref. 4, 5) ATM is 150 kb in length, consists of 66 exons and encodes a nuclear phosphoprotein of approximately 350 kDa (ref. 4–9). Although ATM is considered to be a tumorigenic factor in several human cancers, it has not yet been found mutated in tumors of non-AT patients. Given the marked predisposition of AT patients to develop neoplasms of the T-cell lineage3, we analyzed a series of T-cell leukemias (T-prolymphocytic leukemia, or T-PLL) in non-AT patients in search of genomic changes associated with the development of this disease. Among the recurrent aberrations identified, deletion of the chromosome arm 11q was very frequent. Subsequent molecular cytogenetic analyses allowed us to define a small commonly deleted segment at 11q22.3–23.1 in 15 of 24 T-PLLs studied. Since this critical region contained ATM, we further analyzed the remaining copy of the gene in six cases showing deletions affecting one ATM allele. In all six cases, mutations of the second ATM allele were identified, leading to the absence, premature truncation or alteration of the ATM gene product. Thus, our study demonstrates disruption of both ATM alleles by deletion or point mutation in T-PLL, suggesting that ATM functions as a tumor-suppressor gene in tumors of non-AT individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sedgewick, R.P. & Boder, E., Ataxia-talangiectasia. in Handbook of Clinical Neurology, vol. 16 (eds. Vinken, G.B.P. and Klawans, H.) 347–123 (Elsevier Scientific Publishers, New York, 1991).

    Google Scholar 

  2. Meyn, M.S. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 55, 5991–6001 (1995).

    CAS  PubMed  Google Scholar 

  3. Taylor, A.M.R., Metcatfe, J.A., Thick, J. & Mak, Y.F. Leukemia and lymphoma in ataxia telangiectasia. Blood 87, 423–438 (1996).

    CAS  PubMed  Google Scholar 

  4. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to Pl-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol Genet. 4, 2025–2032 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Uziel, T. et al. Genomic organization of the ATM gene. Genomics 33, 317–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, G., Lee, E.Y.-H.P. The product of the ATM gene is a 370-kDa nuclear phospho-protein. J. Biol. Chem. 271, 33693–33697 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Lakin, N.D. et al. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13, 2707–2716 (1996).

    CAS  PubMed  Google Scholar 

  9. Brown, K.D. et al. The ataxia telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage. Proc. Natl. Acad. Sci. USA 94, 1840–1845 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nowak, R. Discovery of AT gene sparks biomedical research bonanza. Science 268, 1700–1701 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Athma, P., Rappaport, R. & Swift, M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet. Cytogenet. 92, 130–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. FitzGerald, M.G. et al. Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nature Genet. 15, 307–310 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Vorechovsky, I. et al. The ATM gene and susceptibility to breast cancer: Combined mutation analysis of 38 consecutive breast tumors reveals no evidence for somatic mutations and constitutional AT heterozygosity. Cancer Res. 56, 2726–2732 (1996).

    CAS  PubMed  Google Scholar 

  14. Kerangueven, F. et al. Loss of heterozygosity in human breast carcinomas in the ataxia telangiectasia, Cowden disease and BRCA1 gene regions. Oncogene 14, 339–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Matutes, E. et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 78, 3269–3274 (1991).

    CAS  PubMed  Google Scholar 

  16. Harris, N.L. et al. A revised European-American classification of lymphoid neoplasms: A proposal from the international lymphoma study group. Blood 84, 1361–1392 (1994).

    CAS  PubMed  Google Scholar 

  17. Dohner, H. et al. Pentostatin in prolymphocytic leukemia: Phase II trial of the European organization for research and treatment of cancer leukemia cooperative study group. J. Natl. Cancer Inst. 85, 658–662 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Brito-Babapulle, V., Pomfret, M., Matutes, E. & Catovsky, D. Cytogenetic studies on prolymphocytic leukemia. II. T-cell prolymphocytic leukemia. Blood 70, 926–931 (1987).

    CAS  PubMed  Google Scholar 

  19. Finan Daniele, R., Rowlands, D. & Nowell, P. Cytogenetics of chronic T cell leukemia, including two patients with a 14q+ translocation. Virchows Arch. Biol. Cell Pathol. 29, 121–127 (1978).

    Google Scholar 

  20. Zech, L. et al. Inversion of chromosome 14 marks human T-cell chronic lymphocytic leukemia. Nature 308, 858–860 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Croce, C.M. et al. Gene for alpha-chain of human T-cell receptor: Location on chromosome 14 region involved in T-cell neoplasms. Science 227, 1044–1047 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Virgilio, L. et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc. Natl. Acad. Sci. USA 91, 12530–12534 (1994).

    Article  CAS  Google Scholar 

  23. Narducci, M.G. et al. TCL1 oncogene activation in preleukemic T cells from a case of ataxia-telangiectasia. Blood 86, 2358–2364 (1995).

    CAS  PubMed  Google Scholar 

  24. Thick, J. et al. Expression of either the TCL1 oncogene, or transcripts from its homologue MTCP1/c6.1B, in leukaemic and non-leukaemic T cells from ataxia telangiectasia patients. Oncogene 12, 379–386 (1996).

    CAS  PubMed  Google Scholar 

  25. Gilad, S. etal. Predominance of null mutations in ataxia-telangiectasia. Hum. Mol. Genet. 5, 433–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Imai, T. et al. Identification and characterization of a new gene physically linked to the ATM gene. Genome Res. 6, 439–447 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Pittman, S., Morilla, R. & Catovsky, D., T-cell leukemias II. Cytogenetic studies. Leukocyte Res. 6, 33–42 (1982).

    Article  CAS  Google Scholar 

  28. Hoda Maljaie, S.H. et al. Expression of c-myc oncoprotein in chronic T cell leukemias. Leukemia 9, 1694–1699 (1995).

    Google Scholar 

  29. James, M.R. et al. A radiation hybrid map of 506 STS markers spanning human chromosome 11. Nature Genet. 8, 70–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Zakian, V.A. ATM-related genes: What do they tell us about function of the human gene? Cell 82, 685–687 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Shafman, T. et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387, 520–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Barlow, C. et al. Atm-deficient mice: A paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Elson, A. et al. Pleiotropic defects in ataxia-telangiectasia protein deficient mice. Proc. Natl. Acad. Sci. USA 93, 13084–13089 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lichter, P. et al. High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Stilgenbauer, S. et al. Molecular Cytogenetic delineation of a novel critical genomic region in chromosome bands 11 q22.3-q23.1 in lymphoproliferative disorders. Proc. Natl. Acad. Sci. USA 93, 11837–11841 (1996).

    Article  CAS  Google Scholar 

  37. Stilgenbauer, S. et al. High frequency of monoallelic retinoblastoma gene deletion in B-cell chronic lymphoid leukemia shown by interphase cytogenetics. Blood 81, 2118–2124 (1993).

    CAS  PubMed  Google Scholar 

  38. Herz, J. et al. Surface localization and high affinity for calcium of a 500-kD liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipopro-tein receptor. EMBO J. 7, 4119–4127 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Leuven, F. et al. Structure of the gene (LRP1) coding for the human alpha 2-macro-globulin receptor lipoprotein receptor-related protein. Genomics 24, 78–89 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Beaudet, A.L. & Tsui, L.-C. A suggested nomenclature for designating mutations. Hum. Mutat. 2, 245–248 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stilgenbauer, S., Schaffner, C., Litterst, A. et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 3, 1155–1159 (1997). https://doi.org/10.1038/nm1097-1155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1097-1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing