Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of the cyclin–dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents

Abstract

A low proliferating fraction in solid tumors limits the effectiveness of cell cycle–dependent chemotherapeutic agents. To understand the molecular basis of such “kinetic” resistance we cultured tumor cells as multicellular spheroids and examined levels of p27kip1, a cyclin–dependent kinase inhibitor known to be upregulated by intercellular contact in normal cells. When transferred from monolayer to three–dimensional culture, a consistent upregulation (up to 15–fold) of p27 protein was observed in a panel of mouse and human carcinoma cell lines. Antisense–oligonucleotide–mediated downregulation of p27 in EMT–6 mammary tumor cell spheroids reduced intercellular adhesion, increased cell proliferation, sensitized tumor cells to 4–hydroperoxycyclophosphamide, and restored drug– or radiation–induced cell–cycle perturbations repressed in spheroid culture. Our results implicate p27 as a regulator of drug resistance in solid tumors and suggest that tumor–targeted p27 antagonists may be useful chemosensitizers in conjunction with conventional anticancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tannock, I. Cell kinetics and chemotherapy: A critical review. Cancer Treat Rep. 62, 1117–1133 (1978).

    CAS  PubMed  Google Scholar 

  2. Tannock, I.F. Principles of cell proliferation: Cell kinetics. in: Current Cancer Therapeutics. (eds. Kirkwood, J.M., Lotze, M.T. & Yasko, J.M.) 3–13 (Princeton Academic Press, Princeton, New Jersey, 1994).

    Google Scholar 

  3. Sutherland, R.M. Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240, 177–184 (1988).

    Article  CAS  Google Scholar 

  4. Olive, P.L. & Durand, R.E. Drug and radiation resistance in spheroids Cell contact and kinetics. Cancer Metastasis Rev. 13, 121–138 (1994).

    Article  CAS  Google Scholar 

  5. Teicher, B.A. et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247, 1457–1461 (1990).

    Article  CAS  Google Scholar 

  6. Kobayashi, H., Man, S., Kapitain, S.J., Teicher, B.A. & Kerbel, R.S. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc. Natl. Acad. Sci. USA 90, 3294–3298 (1993).

    Article  CAS  Google Scholar 

  7. St Croix, B. et al. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J. Natl. Cancer Inst. 88, 1285–1296 (1996).

    Article  CAS  Google Scholar 

  8. Kerbel, R.S. et al. Multicellular resistance: A new paradigm to explain aspects of acquired drug resistance of solid tumors. Cold. Spring. Harbor. Symp. Quant. Biol. 59, 661–672 (1994).

    Article  CAS  Google Scholar 

  9. Hoffman, R.M. The three-dimensional question: Can clinically relevant tumor drug resistance be measured in vitro? Cancer Metastasis Rev. 13, 169–173 (1994).

    Article  CAS  Google Scholar 

  10. Morgan, D.O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  Google Scholar 

  11. Sherr, C.J. & Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163

    Article  CAS  Google Scholar 

  12. Hunter, T. & Pines, J. Cyclins and cancer. II. Cyclin D and CDK inhibitors come of age. Cell 79 573–582 (1994).

    Article  CAS  Google Scholar 

  13. Ponce-Castaneda, M.V. et al p27kip1 : Chromosomal mapping to 12pl2-12pl3.1 and absence of mutations in human tumors. Cancer Res. 55, 1211–1214 (1995).

    CAS  PubMed  Google Scholar 

  14. Kawamata, N. et al. Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res. 55, 2266–2269 (1995).

    CAS  PubMed  Google Scholar 

  15. Shiohara, M. et al. Absence of WAF1 mutations in a variety of human malignancies. Blood 84, 3781–3784 (1994).

    CAS  PubMed  Google Scholar 

  16. Ferrando, A.A. et al. Mutational analysis of the human cyclin-dependent kinase inhibitor p27kip1in primary breast carcinomas. Hum Genet. 97, 91–94 (1996).

    Article  CAS  Google Scholar 

  17. Spirin, K.S. et al. p27/Kip1 mutation found in breast cancer. Cancer Res. 56, 2400–2404 (1996).

    CAS  PubMed  Google Scholar 

  18. Slingerland, J.M. et al. A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor (β-arrested epithelial cells. Mol. Cell. Biol. 14, 3683–3694 (1994).

    Article  CAS  Google Scholar 

  19. Hengst, L., Dulic, V., Slingerland, J.M., Lees, E. & Reed, S.I. A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl. Acad. Sci. USA 91, 5291–5295 (1994).

    Article  CAS  Google Scholar 

  20. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  Google Scholar 

  21. Wagner, R.W. et al. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science 260, 1510–1513 (1993).

    Article  CAS  Google Scholar 

  22. Coats, S., Flanagan, W.M., Nourse, J. & Roberts, J.M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272 877–880 (1996).

    Article  CAS  Google Scholar 

  23. Reyniskottir, I., Polyak, K. Iavarone, A. & Massague, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β Genes Dev. 9 1831–1845 (1995).

    Article  Google Scholar 

  24. Conte, P.F. et al. Conventional versus cytokinetic polychemotherapy with estrogenic recruitment in metastatic breast cancer: Results of a randomized cooperative trial. J. Clin. Oncol. 5, 339–347 (1987).

    Article  CAS  Google Scholar 

  25. Gore, S.D. et al. Impact of in vivo administration of interleukin 3 on proliferation, differentiation, and chemosensitivity of acute myeloid leukemia. Clin. Cancer Res. 1, 295–303 (1995).

    CAS  PubMed  Google Scholar 

  26. Karp, J.E. & Broder, S. Molecular foundations of cancer: New targets for intervention. Nature Med. 1, 309–320 (1995).

    Article  CAS  Google Scholar 

  27. Fang, F., Orend, G., Watanabe, N., Hunter, T. & Ruoslahti, E. Dependence of cyclin E-Cdk2 kinase activity on cell anchorage. Science 271, 499–502 (1996).

    Article  CAS  Google Scholar 

  28. Sano, Y., Hoshino, T., Bjerkvig, R. & Deen, D.F. The relative resistance of non-cycling cells in 9L multicellular spheroids to spirohydantoin mustard. Eur. J. Cancer Clin. Oncol. 19, 1451–1456 (1983).

    Article  CAS  Google Scholar 

  29. Hinz, G. & Dertinger, H. Increased radioresistance of cells in cultured multicell spheroids. Radiat Environ Biophys. 21, 255–264 (1983).

    Article  CAS  Google Scholar 

  30. Remvikos, Y. et al. Cell cycle modifications of breast cancers during neoadjuvant chemotherapy: A flow cytometry study on fine needle aspirates. Eur. J. Cancer 29A 1843–1848 (1993).

    Article  CAS  Google Scholar 

  31. Briffod, M. et al. Evaluation of breast carcinoma chemosensitivity by flow cyto-metric DNA analysis and computer assisted image analysis. Cytometry 13, 250–258 (1992).

    Article  CAS  Google Scholar 

  32. Spyratos, F. et al. Sequential cytopunctures during preoperative chemotherapy for primary breast carcinoma. Cancer 69, 470–475 (1992).

    Article  CAS  Google Scholar 

  33. Meredith, J.E. Jr., Fazeli, B. & Schwartz, M.A. The extra cellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953–961 (1993).

    Article  CAS  Google Scholar 

  34. Frisch, S.M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell. Rial. 124, 619–626 (1994).

    Article  CAS  Google Scholar 

  35. Bates, R.C., Buret, A. van Helden, D.F., Horton, M.A. & Burns, G.F. Apoptosis induced by inhibition of inter cellular contact. J. Cell Biol. 125, 403–415 (1994).

    Article  CAS  Google Scholar 

  36. Mendonca, M.S., Rodriguez, A. & Alpen, E.L. Differential repair of potentially lethal damage in exponentially growing and quiescent 9L Cells. Rad. Res. 122, 38–43 (1990).

    Article  CAS  Google Scholar 

  37. Little, J.B., Hahn, G.M., Frindel, E. & Tubiana, M. Repair of potentially lethal radiation damage in vitro and in vivo . Radiology 106, 689–694 (1973).

    Article  CAS  Google Scholar 

  38. Dimanche-Boitrel, M.-T., Garrido, C. & Chauffert, B. Kinetic resistance to anticancer agents. Cytotechnology 12, 347–356 (1993).

    Article  CAS  Google Scholar 

  39. Dimanche-Boitrel, M. et al. Confluence-dependent resistance in human colon cancer cells: Role of reduced drug accumulation and low intrinsic chemosensitivity of resting cells. Int. J. Cancer 50, 677–682 (1992).

    Article  CAS  Google Scholar 

  40. Zhang, W. et al. High levels of constitutive WAFl/Cipl protein are associated with chemoresistance in acute myelogenous leukemia. Clin. Cancer Res. 1, 1051–1057 (1995).

    CAS  PubMed  Google Scholar 

  41. Poluha, W. et al. The cyclin-dependent kinase inhibitor p21WAF1 is required for survival of differentiating neuroblastoma cells. Mol. Cell. Biol. 16, 1335–1341 (1996).

    Article  CAS  Google Scholar 

  42. Waldman, T., Lengauer, C., Kinzler, K.W. & Vogelstein, B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713–716 (1996).

    Article  CAS  Google Scholar 

  43. Wang, J. & Walsh, K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273, 359–361 (1996).

    Article  CAS  Google Scholar 

  44. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1undergo normal development, but are defective in Gl checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  45. Nakayama, K. et al. Mice lacking p27kip1display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  Google Scholar 

  46. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27kip1 . Cell 85, 721–732 (1996).

    Article  CAS  Google Scholar 

  47. Fero, M.L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  Google Scholar 

  48. Tonkinson, J.L. & Stein, C.A. Antisense oligodeoxynucleotides as clinical therapeutic agents. Cancer Invest. 14 (1), 54–65 (1996).

    Article  CAS  Google Scholar 

  49. Hietanen, P. et al. Do DNA ploidy and S-phase fraction in primary tumour predict the response to chemotherapy in metastatic breast cancer. Br. J. Cancer 71, 1029–1032 (1995).

    Article  CAS  Google Scholar 

  50. O'Reilly, S.M., Camplejohn, R.S., Rubens, R.D. & Richards, M.A. DNA flow cytometry and response to preoperative chemotherapy for primary breast cancer. Eur. J. Cancer 213, 681–683 (1992).

    Article  Google Scholar 

  51. Remvikos, Y. et al. Correlation of pretreatment proliferative activity of breast cancer with the response to cytotoxic chemotherapy. J. Natl. Cancer Inst. 81, 1383–1387 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croix, B., Flørenes, V., Rak, J. et al. Impact of the cyclin–dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nat Med 2, 1204–1210 (1996). https://doi.org/10.1038/nm1196-1204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing