Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Peptide-based therapeutic vaccines for allergic and autoimmune diseases

Abstract

Allergic and autoimmune diseases are forms of immune hypersensitivity that increasingly cause chronic ill health. Most current therapies treat symptoms rather than addressing underlying immunological mechanisms. The ability to modify antigen-specific pathogenic responses by therapeutic vaccination offers the prospect of targeted therapy resulting in long-term clinical improvement without nonspecific immune suppression. Examples of specific immune modulation can be found in nature and in established forms of immune desensitization. Understanding and exploiting common mechanisms such as the ability to induce antigen-specific regulatory cells should allow the development of effective therapeutic strategies for both forms of immunopathology. Targeting pathogenic T cells using vaccines consisting of synthetic peptides representing T cell epitopes is one such strategy that is currently being evaluated with encouraging results. Future challenges in the development of therapeutic vaccines include selection of appropriate antigens and peptides, optimization of peptide dose and route of administration and identifying strategies to induce bystander suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Balancing effector and regulatory T cell responses.
Figure 2: Antigen-presenting cells direct T cell differentiation.
Figure 3: Peptide therapy expands the regulatory T cell pool.

Similar content being viewed by others

References

  1. Cookson, W. Genetics and genomics of asthma and allergic diseases. Immunol. Rev. 190, 195–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Merriman, T.R. & Todd, J.A. Genetics of autoimmune disease. Curr. Opin. Immunol. 7, 786–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat. Genet. 13, 464–468 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bali, D. et al. Genetic analysis of multiplex rheumatoid arthritis families. Genes Immun. 1, 28–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Strachan, D.P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259–1260 (1989).

    Article  CAS  Google Scholar 

  6. Gale, E.A. A missing link in the hygiene hypothesis? Diabetologia 45, 588–594 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Heaton, T. et al. An immunoepidemiological approach to asthma: identification of in vitro T-cell response patterns associated with different wheezing phenotypes in children. Lancet 365, 142–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, G., Berry, G., DeKruyff, R.H. & Umetsu, D. T. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lafaille, J.J. et al. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307–312 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barthlott, T., Kassiotis, G. & Stockinger, B. T cell regulation as a side effect of homeostasis and competition. J. Exp. Med. 197, 451–460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  12. Wraith, D.C., Nicolson, K.S. & Whitley, N.T. Regulatory CD4(+) T cells and the control of autoimmune disease. Curr. Opin. Immunol. 16, 695–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ling, E.M. et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363, 608–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Cavani, A. et al. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J. Immunol. 171, 5760–5768 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson, M.R., Rugtveit, J. & Brandtzaeg, P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 199, 1679–1688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ou, L.S., Goleva, E., Hall, C. & Leung, D.Y. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J. Allergy Clin. Immunol. 113, 756–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Balandina, A., Lecart, S., Dartevelle, P., Saoudi, A. & Berrih-Aknin, S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105, 735–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. de Kleer, I.M. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172, 6435–6443 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Arif, S. et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest. 113, 451–463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Viglietta, V., Baecher-Allan, C., Weiner, H.L. & Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrett, J.H., Brennan, P., Fiddler, M. & Silman, A.J. Does rheumatoid arthritis remit during pregnancy and relapse postpartum? Results from a nationwide study in the United Kingdom performed prospectively from late pregnancy. Arthritis Rheum. 42, 1219–1227 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Platts-Mills, T., Vaughan, J., Squillace, S., Woodfolk, J. & Sporik, R. Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 357, 752–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Durham, S.R. et al. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341, 468–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Bousquet, J. et al. Allergen immunotherapy: therapeutic vaccines for allergic diseases. World Health Organization. American academy of Allergy, Asthma and Immunology. Ann. Allergy Asthma Immunol. 81, 401–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Noon, L. Prophylactic innoculation against hay fever. Lancet i, 1572–1573 (1911).

    Article  Google Scholar 

  26. Ebner, C. et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin. Exp. Allergy 27, 1007–1015 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Secrist, H., Chelen, C.J., Wen, Y., Marshall, J.D. & Umetsu, D.T. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J. Exp. Med. 178, 2123–2130 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Varney, V.A. et al. Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J. Clin. Invest. 92, 644–651 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wachholz, P.A. et al. Grass pollen immunotherapy for hayfever is associated with increases in local nasal but not peripheral Th1:Th2 cytokine ratios. Immunology 105, 56–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Francis, J.N., Till, S.J. & Durham, S.R. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J. Allergy Clin. Immunol. 111, 1255–1261 (2003).

    CAS  Google Scholar 

  31. Jutel, M. et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur. J. Immunol. 33, 1205–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Nouri-Aria, K.T. et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J. Immunol. 172, 3252–3259 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Nasser, S.M., Ying, S., Meng, Q., Kay, A.B. & Ewan, P.W. Interleukin-10 levels increase in cutaneous biopsies of patients undergoing wasp venom immunotherapy. Eur. J. Immunol. 31, 3704–3713 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Burkhart, C., Liu, G.Y., Anderton, S.M., Metzler, B. & Wraith, D.C. Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10. Int. Immunol. 11, 1625–1634 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Sundstedt, A., O'Neill, E. J., Nicolson, K. S. & Wraith, D. C. Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J. Immunol. 170, 1240–1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Barrat, F.J. et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathisen, P.M., Yu, M., Johnson, J.M., Drazba, J.A. & Tuohy, V.K. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J. Exp. Med. 186, 159–164 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akdis, C.A. et al. Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro. J. Clin. Invest. 98, 1676–1683 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akdis, C.A., Blesken, T., Akdis, M., Wuthrich, B. & Blaser, K. Role of interleukin 10 in specific immunotherapy. J. Clin. Invest 102, 98–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeannin, P., Lecoanet, S., Delneste, Y., Gauchat, J.F. & Bonnefoy, J.Y. IgE versus IgG4 production can be differentially regulated by IL-10. J. Immunol. 160, 3555–3561 (1998).

    CAS  PubMed  Google Scholar 

  41. Galli, S.J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 6, 135–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Pedotti, R., De Voss, J.J., Steinman, L. & Galli, S.J. Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol. 24, 479–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Liblau, R.S., Singer, S.M. & McDevitt, H.O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 16, 34–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Duda, P.W., Schmied, M.C., Cook, S.L., Krieger, J.I. & Hafler, D.A. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J. Clin. Invest. 105, 967–976 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Munari, L., Lovati, R. & Boiko, A. Therapy with glatiramer acetate for multiple sclerosis. Cochrane Database Syst. Rev. CD004678 (2004).

  46. Johnson, K.P. et al. Glatiramer acetate (Copaxone): comparison of continuous versus delayed therapy in a six-year organized multiple sclerosis trial. Mult. Scler. 9, 585–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, K.P., Ford, C.C., Lisak, R.P. & Wolinsky, J.S. Neurologic consequence of delaying glatiramer acetate therapy for multiple sclerosis: 8-year data. Acta Neurol. Scand. 111, 42–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Stern, J.N. et al. Amelioration of proteolipid protein 139-151-induced encephalomyelitis in SJL mice by modified amino acid copolymers and their mechanisms. Proc. Natl. Acad. Sci. USA 101, 11743–11748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stern, J.N. et al. Peptide 15-mers of defined sequence that substitute for random amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 102, 1620–1625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Faria, A.M. & Weiner, H.L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Dakin, R. Remarks on a cutaneous affection produced by certain poisonous vegetables. Am. J. Med. Sci. 4, 98–100 (1829).

    Article  Google Scholar 

  52. Weiner, H.L. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 18, 335–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Nussenblatt, R.B. et al. Treatment of uveitis by oral administration of retinal antigens: results of a phase I/II randomized masked trial. Am. J. Ophthalmol. 123, 583–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, J.B., Rask, C., Olsson, T., Holmgren, J. & Czerkinsky, C. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc. Natl. Acad. Sci. USA 93, 7196–7201 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams, N.A., Hirst, T.R., & Nashar, T.O. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol. Today 20, 95–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A., & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Maron, R., Melican, N.S., & Weiner, H.L. Regulatory Th2-type T cell lines against insulin and GAD peptides derived from orally- and nasally-treated NOD mice suppress diabetes. J. Autoimmun. 12, 251–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. al Sabbagh, A., Nelson, P.A., Akselband, Y., Sobel, R.A., & Weiner, H.L. Antigen-driven peripheral immune tolerance: suppression of experimental autoimmmune encephalomyelitis and collagen-induced arthritis by aerosol administration of myelin basic protein or type II collagen. Cell. Immunol. 171, 111–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Anderton, S.M., Burkhart, C., Liu, G.Y., Metzler, B. & Wraith, D. C. Antigen-specific tolerance induction and the immunotherapy of experimental autoimmune disease. Novartis Found. Symp. 215, 120–131 (1998).

    CAS  PubMed  Google Scholar 

  60. Alpan, O., Bachelder, E., Isil, E., Arnheiter, H. & Matzinger, P. 'Educated' dendritic cells act as messengers from memory to naive T helper cells. Nat. Immunol 5, 615–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Lehmann, P.V., Forsthuber, T., Miller, A. & Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Genain, C. P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Blanas, E., Carbone, F.R., Allison, J., Miller, J.F. & Heath, W.R. Induction of autoimmune diabetes by oral administration of autoantigen. Science 274, 1707–1709 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Hanninen, A., Braakhuis, A., Heath, W. R., & Harrison, L. C. Mucosal antigen primes diabetogenic cytotoxic T-lymphocytes regardless of dose or delivery route. Diabetes 50, 771–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Norman, P.S., Lichtenstein, L.M., & Marsh, D.G. Studies on allergoids from naturally occurring allergens. IV. Efficacy and safety of long-term allergoid treatment of ragweed hay fever. J. Allergy Clin. Immunol. 68, 460–470 (1981).

    Article  CAS  PubMed  Google Scholar 

  66. Niederberger, V. et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc. Natl. Acad. Sci. USA 101 Suppl 2, 14677–14682 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Valenta, R. et al. Genetically engineered and synthetic allergen derivatives: candidates for vaccination against type I allergy. Biol. Chem. 380, 815–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Hoyne, G.F., O'Hehir, R.E., Wraith, D.C., Thomas, W.R., & Lamb, J.R. Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J. Exp. Med. 178, 1783–1788 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Briner, T. J., Kuo, M. C., Keating, K. M., Rogers, B. L. & Greenstein, J. L. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc. Natl. Acad. Sci. USA 90, 7608–7612 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Norman, P.S. et al. Treatment of cat allergy with T-cell reactive peptides. Am. J. Respir. Crit. Care Med. 154, 1623–1628 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Maguire, P., Nicodemus, C., Robinson, D., Aaronson, D. & Umetsu, D.T. The safety and efficacy of ALLERVAX CAT in cat allergic patients. Clin. Immunol. 93, 222–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Simons, F.E., Imada, M., Li, Y., Watson, W.T., & HayGlass, K.T. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int. Immunol. 8, 1937–1945 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Pene, J. et al. Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats. J. Allergy Clin. Immunol. 102, 571–578 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Muller, U. et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J. Allergy Clin. Immunol. 101, 747–754 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Fellrath, J.M. et al. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J. Allergy Clin. Immunol. 111, 854–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Oldfield, W.L., Kay, A.B. & Larche, M. Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J. Immunol. 167, 1734–1739 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Oldfield, W.L., Larche, M. & Kay, A.B. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet 360, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Alexander, C., Tarzi, M., Larche, M. & Kay, A. B. The effect of Fel d 1-derived T cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy, in the press.

  79. Alexander, C., Ying, S., Kay, B. & Larche, M. Fel d 1-derived T cell peptide therapy induces recruitment of CD4CD25; CD4 interferon-gamma T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin. Exp. Allergy 35, 52–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Metzler, B. & Wraith, D.C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol 5, 1159–1165 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Anderton, S.M. & Wraith, D.C. Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur. J. Immunol 28, 1251–1261 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, J.Q. et al. Inhibition of experimental autoimmune encephalomyelitis in Lewis rats by nasal administration of encephalitogenic MBP peptides: synergistic effects of MBP 68-86 and 87-99. Int. Immunol. 10, 1139–1148 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Staines, N.A. et al. Mucosal tolerance and suppression of collagen-induced arthritis (CIA) induced by nasal inhalation of synthetic peptide 184-198 of bovine type II collagen (CII) expressing a dominant T cell epitope. Clin. Exp. Immunol. 103, 368–375 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chu, C.Q. & Londei, M. Differential activities of immunogenic collagen type II peptides in the induction of nasal tolerance to collagen-induced arthritis. J. Autoimmun. 12, 35–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Prakken, B.J. et al. Peptide-induced nasal tolerance for a mycobacterial heat shock protein 60 T cell epitope in rats suppresses both adjuvant arthritis and nonmicrobially induced experimental arthritis. Proc. Natl. Acad. Sci. USA 94, 3284–3289 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tian, J. et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J. Exp. Med. 183, 1561–1567 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl. Acad. Sci. USA 93, 956–960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elias, D. et al. Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes 46, 758–764 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Thurau, S.R., Chan, C.C., Suh, E. & Nussenblatt, R.B. Induction of oral tolerance to S-antigen induced experimental autoimmune uveitis by a uveitogenic 20mer peptide. J. Autoimmun. 4, 507–516 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Karachunski, P.I., Ostlie, N.S., Okita, D.K. & Conti-Fine, B.M. Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences. J. Clin. Invest 100, 3027–3035 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paas-Rozner, M. et al. Oral administration of a dual analog of two myasthenogenic T cell epitopes down-regulates experimental autoimmune myasthenia gravis in mice. Proc. Natl. Acad. Sci. USA 97, 2168–2173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zou, L.P. et al. Antigen-specific immunosuppression: nasal tolerance to P0 protein peptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 94, 109–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Raz, I. et al. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358, 1749–1753 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Prakken, B.J. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 101, 4228–4233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sloan-Lancaster, J. & Allen, P. M. Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu.Rev.Immunol 14, 1–27 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Franco, A. et al. T cell receptor antagonist peptides are highly effective inhibitors of experimental allergic encephalomyelitis. Eur. J. Immunol. 24, 940–946 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Karin, N., Mitchell, D.J., Brocke, S., Ling, N. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon gamma and tumor necrosis factor alpha production. J. Exp. Med. 180, 2227–2237 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Kuchroo, V.K. et al. A single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J. Immunol. 153, 3326–3336 (1994).

    CAS  PubMed  Google Scholar 

  99. Nicholson, L.B., Murtaza, A., Hafler, B.P., Sette, A. & Kuchroo, V.K. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc. Natl. Acad. Sci. USA 94, 9279–9284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in relapsing MS Study Group. Nat. Med. 6, 1176–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Anderton, S.M., Manickasingham, S.P. & Wraith, D.C. Fine specificity of myelin basic protein reactive T-cells: implications for T-cell receptor antagonism. Biochem. Soc. Trans. 25, 659–661 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Chai, J.G., James, E., Dewchand, H., Simpson, E. & Scott, D. Transplantation tolerance induced by intranasal administration of HY peptides. Blood 103, 3951–3959 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Critchfield, J. M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Paas-Rozner, M., Sela, M., & Mozes, E. The nature of the active suppression of responses associated with experimental autoimmune myasthenia gravis by a dual altered peptide ligand administered by different routes. Proc. Natl. Acad. Sci. USA 98, 12642–12647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Apostolou, I. & Von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Verhoef, A., Alexander, C., Kay, A.B. & Larche, M. T Cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med., in the press.

  109. Haselden, B.M., Kay, A.B., & Larche, M. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189, 1885–1894 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vidard, L., Colarusso, L.J., & Benacerraf, B. Specific T-cell tolerance may be preceded by a primary response. Proc. Natl. Acad. Sci. USA 91, 5627–5631 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Webb, S., Morris, C. & Sprent, J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 63, 1249–1256 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Hoyne, G.F., Askonas, B.A., Hetzel, C., Thomas, W.R., & Lamb, J.R. Regulation of house dust mite responses by intranasally administered peptide: transient activation of CD4+ T cells precedes the development of tolerance in vivo. Int. Immunol. 8, 335–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Ali, F.R., Oldfield, W.L., Higashi, N., Larche, M. & Kay, A. B. Late asthmatic reactions induced by inhalation of allergen-derived T cell peptides. Am. J. Respir. Crit. Care Med. 169, 20–26 (2004).

    Article  PubMed  Google Scholar 

  114. Metzler, B., Anderton, S.M., Manickasingham, S.P., & Wraith, D.C. Kinetics of peptide uptake and tissue distribution following a single intranasal dose of peptide. Immunol. Invest. 29, 61–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Arentz-Hansen, H. et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martin, R., McFarland, H.F. & McFarlin, D.E. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol 10, 153–187 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Southwood, S. et al. Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 160, 3363–3373 (1998).

    CAS  PubMed  Google Scholar 

  118. Texier, C. et al. HLA-DR restricted peptide candidates for bee venom immunotherapy. J. Immunol. 164, 3177–3184 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Anderton, S.M., Viner, N.J., Matharu, P., Lowrey, P.A. & Wraith, D.C. Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat. Immunol 3, 175–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Shen, C.R. et al. Peptides containing a dominant T-cell epitope from red cell band 3 have in vivo immunomodulatory properties in NZB mice with autoimmune hemolytic anemia. Blood 102, 3800–3806 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Santambrogio, L., Sato, A.K., Fischer, F.R., Dorf, M.E. & Stern, L.J. Abundant empty class II MHC molecules on the surface of immature dendritic cells. Proc. Natl. Acad. Sci. USA 96, 15050–15055 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18, 605–617 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Dhodapkar, M.V., Steinman, R.M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zamvil, S.S. et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324, 258–260 (1986).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, G.Y. & Wraith, D.C. Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice—implications for autoimmunity. Int. Immunol. 7, 1255–1263 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Metzler, B. & Wraith, D.C. Inhibition of T-cell responsiveness by nasal peptide administration: influence of the thymus and differential recovery of T-cell-dependent functions. Immunology 97, 257–263 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. B. Kay for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Larché.

Ethics declarations

Competing interests

M.L. has current research funding from PowderJect Pharmaceuticals (currently owned by Chiron Vaccines). M.L. is a named inventor on three families of patents relating to peptide immunotherapy. M.L. is a director and shareholder of Circassia Limited, a company developing peptide immunotherapy products. D.C.W. is a director and shareholder of Apitope Limited, a company developing peptide immunotherapy products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larché, M., Wraith, D. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 11 (Suppl 4), S69–S76 (2005). https://doi.org/10.1038/nm1226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing