Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy

Abstract

The development of stem–cell gene therapy is hindered by the absence of repopulation assays for primitive human hematopoietic cells. Current methods of gene transfer rely on in vitro colony–forming cell (CFC) and long–term culture–initiating cell (LTC–IC) assays, as well as inference from other mammalian species. We have identified a novel human hematopoietic cell, the SCID–repopulating cell (SRC), a cell more primitive than most LTC–ICs and CFCs. The SRC, exclusively present in the CD4+ CD8 fraction, is capable of multilineage repopulation of the bone marrow of nonobese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice). SRCs were rarely transduced with retroviruses, distinguishing them from most CFCs and LTC–ICs. This observation is consistent with the low level of gene marking seen in human gene therapy trials. An SRC assay may aid in the characterization of hematopoiesis, as well as the improvement of transduction methods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, W.F. Human gene therapy. Science 256, 808–813 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Schuening, F. et al. Retrovirus-mediated gene transduction into long-term re-populating marrow cells of the dog. Blood 78, 2568–2576 (1991).

    CAS  PubMed  Google Scholar 

  4. Bodine, D.M. et al. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82, 1975–1980 (1993).

    CAS  PubMed  Google Scholar 

  5. Brenner, M.K. et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342, 1134–1137 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Deisseroth, A.B. et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83, 3068–3076 (1994).

    CAS  PubMed  Google Scholar 

  7. Kohn, D. et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Med. 1, 1017–1023 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Dunbar, C.E. et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85, 3048–3057 (1995).

    CAS  PubMed  Google Scholar 

  9. Hock, R.A. & Miller, A.D. Retrovirus-mediated transfer and expression of drug resistance genes in human haematopoietic progenitor cells. Nature 320, 275–277 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Dick, J.E., Kamel-Reid, S., Murdoch, B. & Doedens, M. Gene transfer into normal human hematopoietic cells using in vitro and in vivo assays. Blood 78, 624–634 (1991).

    CAS  PubMed  Google Scholar 

  11. Hughes, P.F., Eaves, C.J., Hogge, D.E. & Humphries, R.K. High-efficiency gene transfer to human hematopoietic cells maintained in long-term marrow culture. Blood 74, 1915–1922 (1989).

    CAS  PubMed  Google Scholar 

  12. Eaves, C.J. et al. The human hematopoietic stem cell in vitro and in vivo. Blood Cells 18, 301–307 (1992).

    CAS  PubMed  Google Scholar 

  13. Moritz, T., Patel, V.P. & Williams, D.A. Bone marrow extra cellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J. Clin. Invest. 93, 1451–1457 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nolta, J.A., Hanley, M.B. & Kohn, D.B. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: Analysis of gene transduction of long-lived progenitors. Blood 83, 3041–3051 (1994).

    CAS  PubMed  Google Scholar 

  15. Lapidot, T. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in scid mice. Science 255, 1137–1141 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Vormoor, J. et al. Immature human cord blood progenitors engraft and proliferate to high levels in immune-deficient SCID mice. Blood 83, 2489–2497 (1994).

    CAS  PubMed  Google Scholar 

  17. Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.-S. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 89, 2804–2808 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shultz, L. et al. Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice. J. Immunol 154, 180–191 (1995).

    CAS  PubMed  Google Scholar 

  19. Cashman, J. et al. Proliferation and expansion of CD34+ human progenitor cells in the marrow of NOD/SCID mice. Blood 84, 368a (1994).

  20. Larochelle, A. et al. Engraftment of immune-deficient mice with primitive hematopoietic cells from β-thalassemia and sickle cell anemia patients: Implications for evaluating human gene therapy protocols. Hum. Mol. Genet. 4, 163–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Vormoor, J., Lapidot, T., Larochelle, A. & Dick, J.E. Human hematopoiesis in SCID mice. in Human Hematopoiesis in SCID Mice (ed. Roncarolo, M.-G., Namikawa, R. & Péault, B.) 197–212 (Landes Co., Austin, Texas, 1995).

    Chapter  Google Scholar 

  22. Dick, J. Normal and leukemic human stem cells assayed in SCID mice. Semin. Immunol. 8, 197–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kimizuka, F. et al. Production and characterization of functional domains of human fibronectin fragment expressed in Escherichia coli . J. Biochem. 110, 284–291 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Bodine, D.M., McDonagh, K.T., Seidel, N.E. & Nienhuis, A.W. Survival and retrovirus infection of murine hematopoietic stem cells in vitro: Effects of 5-FU and method of infection. Exp. Hematol. 19, 206–212 (1991).

    CAS  PubMed  Google Scholar 

  25. Moritz, T., Keller, D.C. & Williams, D.A. Human cord blood cells as targets fo gene transfer: Potential use in genetic therapy of severe combined immunodeficiency disease. J. Exp. Med. 178, 529 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Williams, D.A., Rios, M., Stephens, C. & Patel, V.P. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature 352, 438–441 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Harrison, D.E., Lerner, C.P. & Spooncer, E. Erythropoietic repopulating ability of stem cells from long-term marrow culture. Blood 69, 1021–1025 (1987).

    CAS  PubMed  Google Scholar 

  28. Ochman, H., Gerber, A.S. & Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Civin, C. et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 133, 157–165 (1984).

    CAS  PubMed  Google Scholar 

  30. Terstappen, L.W.W.M., Huang, S., Safford, M., Lansdorp, P.M. & Loken, M.R. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38progenitor cells. Blood 77, 1218–1227 (1991).

    CAS  PubMed  Google Scholar 

  31. Hanenberg, H. et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nature Med. 2, 876–882 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Moritz, T. et al. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: Evidence for direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88, 855–862 (1996).

    CAS  PubMed  Google Scholar 

  33. Roath, S. et al. Specific capture of targeted hematopoietic cells by high gradient magnetic separation by the use of ordered wire array filters and tetrameric antibody complexes linked to a dextran iron particle. Prog. Clin. Biol. Res. 389, 155–163 (1994).

    CAS  PubMed  Google Scholar 

  34. Huang, S. & Terstappen, L.W. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38-hematopoietic stem cells. Blood 83, 1515–1526 (1994).

    CAS  PubMed  Google Scholar 

  35. Craig, W., Kay, R., Cutler, R.B. & Lansdorp, P.M. Expression of Thy-1 on human hematopoietic progenitor cells. J. Exp. Med. 177, 1331–1342 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Rusten, L.S. et al. Functional differences between CD38 and DR-subfractions of CD34+ bone marrow cells. Blood 84, 1473–1481 (1994).

    CAS  PubMed  Google Scholar 

  37. Hao, Q.L., Shah, A.J., Thiemann, F.T., Smogorzewska, E.M. & Crooks, G.M. A functional comparison of CD34+CD38 Cells in cord blood and bone marrow. Blood 86, 3745–3753 (1995).

    CAS  PubMed  Google Scholar 

  38. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Sirard, C. et al. Normal and leukemic SCID-repopulating cells (SRCs) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRCs are detected in blast crisis. Blood 87, 1539–1548 (1996).

    CAS  PubMed  Google Scholar 

  40. Nolta, J., Dao, M., Wells, S., Smogorzewska, E. & Kohn, D. Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune deficient mice. Proc. Natl Acad. Sci. USA 93, 2414–2419 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miller, A.D. et al. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol. 65, 2220–2224 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim, B., Apperley, J.F., Orkin, S.H. & Williams, D.A. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 86, 8892–8896 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jönsson, J.L., Wu, Q., Nilsson, K. & Phillips, R.A. Use of a promoter-trap retrovirus to identify and isolate genes involved in differentiation of a myeloid progenitor cell line in vitro. Blood 87, 1771–1779 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larochelle, A., Vormoor, J., Hanenberg, H. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat Med 2, 1329–1337 (1996). https://doi.org/10.1038/nm1296-1329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1296-1329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing