Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL

Abstract

During the progression of atherosclerosis, autoantibodies are induced to epitopes of oxidized low-density lipoprotein (oxLDL) and active immunization of hypercholesterolemic mice with oxLDL ameliorates atherogenesis. We unexpectedly found that many autoantibodies to oxLDL derived from 'naive' atherosclerotic mice share complete genetic and structural identity with antibodies from the classic anti-phosphorylcholine B-cell clone, T15, which protect against common infectious pathogens, including pneumococci. To investigate whether in vivo exposure to pneumococci can affect atherogenesis, we immunized Ldlr−/− mice with Streptococcus pneumoniae. This induced high circulating levels of oxLDL-specific IgM and a persistent expansion of oxLDL-specific T15 IgM-secreting B cells primarily in the spleen, which were cross-reactive with pneumococcal determinants. Pneumococcal immunization decreased the extent of atherosclerosis, and plasma from these mice had an enhanced capacity to block the binding of oxLDL to macrophages. These studies show molecular mimicry between epitopes of oxLDL and S. pneumoniae and indicate that these immune responses can have beneficial effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pneumococcal immunization induces oxLDL-specific IgM.
Figure 2: ELISpot assay of frequencies of immunoglobulin-secreting cells (ISCs) in the spleens of the three groups of immunized mice.
Figure 3: First pneumococcal intervention study (24 weeks of atherogenic diet).
Figure 4: Second pneumococcal intervention study (16 weeks of atherogenic diet).
Figure 5: Plasma from pneumococcal-immunized mice inhibits oxLDL binding by macrophages.

Similar content being viewed by others

References

  1. Glass, C.K. & Witztum, J.L. Atherosclerosis. The road ahead. Cell 104, 503–516 (2001).

    Article  CAS  Google Scholar 

  2. Libby, P., Ridker, P.M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  Google Scholar 

  3. Binder, C.J. et al. Innate and acquired immunity in atherogenesis. Nat. Med. 8, 1218–1226 (2002).

    Article  CAS  Google Scholar 

  4. Hansson, G.K., Libby, P., Schonbeck, U. & Yan, Z.Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res. 91, 281–291 (2002).

    Article  CAS  Google Scholar 

  5. Hansson, G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 1876–1890 (2001).

    Article  CAS  Google Scholar 

  6. Hörkkö, S. et al. Immunological responses to oxidized LDL. Free Radic. Biol. Med. 28, 1771–1779 (2000).

    Article  Google Scholar 

  7. Watson, A.D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).

    Article  CAS  Google Scholar 

  8. Hörkkö, S. et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest. 103, 117–128 (1999).

    Article  Google Scholar 

  9. Palinski, W. et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10, 325–335 (1990).

    Article  CAS  Google Scholar 

  10. Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest. 98, 800–814 (1996).

    Article  CAS  Google Scholar 

  11. Chang, M.K., Binder, C.J., Torzewski, M. & Witztum, J.L. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA 99, 13043–13048 (2002).

    Article  CAS  Google Scholar 

  12. Friedman, P., Hörkkö, S., Steinberg, D., Witztum, J.L. & Dennis, E.A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol concentration. J. Biol. Chem. 277, 7010–7020 (2002).

    Article  CAS  Google Scholar 

  13. Shaw, P.X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  Google Scholar 

  14. Chang, M.K. et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl. Acad. Sci. USA 96, 6353–6358 (1999).

    Article  CAS  Google Scholar 

  15. Briles, D.E., Forman, C., Hudak, S. & Claflin, J.L. Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J. Exp. Med. 156, 1177–1185 (1982).

    Article  CAS  Google Scholar 

  16. Mi, Q.S. et al. Highly reduced protection against Streptococcus pneumoniae after deletion of a single heavy chain gene in mouse. Proc. Natl. Acad. Sci. USA 97, 6031–6036 (2000).

    Article  CAS  Google Scholar 

  17. Snapper, C.M. et al. Distinct types of T-cell help for the induction of a humoral immune response to Streptococcus pneumoniae. Trends Immunol. 22, 308–311 (2001).

    Article  CAS  Google Scholar 

  18. Kearney, J.F., Barletta, R., Quan, Z.S. & Quintans, J. Monoclonal vs. heterogeneous anti-H-8 antibodies in the analysis of the anti-phosphorylcholine response in BALB/c mice. Eur. J. Immunol. 11, 877–883 (1981).

    Article  CAS  Google Scholar 

  19. Kenny, J.J. et al. Antigen binding and idiotype analysis of antibodies obtained after electroporation of heavy and light chain genes encoding phosphocholine-specific antibodies: a model for T15-idiotype dominance. J. Exp. Med. 176, 1637–1643 (1992).

    Article  CAS  Google Scholar 

  20. Desaymard, C., Giusti, A.M. & Scharff, M.D. Rat anti-T15 monoclonal antibodies with specificity for VH- and VH-VL epitopes. Mol. Immunol. 21, 961–967 (1984).

    Article  CAS  Google Scholar 

  21. Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest. 100, 1575–1580 (1997).

    Article  CAS  Google Scholar 

  22. Dansky, H.M., Charlton, S.A., Harper, M.M. & Smith. J.D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl. Acad. Sci. USA 94, 4642–4646 (1997).

    Article  CAS  Google Scholar 

  23. Palinski, W., Miller, E. & Witztum, J.L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl. Acad. Sci. USA 92, 821–825 (1995).

    Article  CAS  Google Scholar 

  24. Freigang, S., Hörkkö, S., Miller, E., Witztum, J.L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18, 1972–1982 (1998).

    Article  CAS  Google Scholar 

  25. Hansen, P.R. et al. Freunds adjuvant alone is antiatherogenic in apoE-deficient mice and specific immunization against TNFα confers no additional benefit. Atherosclerosis 158, 87–94 (2001).

    Article  CAS  Google Scholar 

  26. Silverman, G.J. et al. A B cell superantigen-induced persistent “Hole” in the B-1 repertoire. J. Exp. Med. 192, 87–98 (2000).

    Article  CAS  Google Scholar 

  27. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  28. Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med. 195, 771–780 (2002).

    Article  CAS  Google Scholar 

  29. Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G.K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109, 745–753 (2002).

    Article  CAS  Google Scholar 

  30. Masmoudi, H., Mota-Santos, T., Huetz, F., Coutinho, A. & Cazenave, P.A. All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int. Immunol. 2, 515–520 (1990).

    Article  CAS  Google Scholar 

  31. Berland, R. & Wortis, H.H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  Google Scholar 

  32. Silverman, G.J. et al. Neo-self antigens and the expansion of B-1 cells: lessons from atherosclerosis-prone mice. Curr. Top. Microbiol. Immunol. 252, 189–200 (2000).

    CAS  PubMed  Google Scholar 

  33. Macpherson, A.J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  Google Scholar 

  34. Ochsenbein, A.F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  Google Scholar 

  35. Martin, F., Oliver, A.M. & Kearney, J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  Google Scholar 

  36. Reid, R.R. et al. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J. Immunol. 159, 970–975 (1997).

    CAS  PubMed  Google Scholar 

  37. Gillotte-Taylor, K., Boullier, A., Witztum, J.L., Steinberg, D. & Quehenberger, O. Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J. Lipid Res. 42, 1474–1482 (2001).

    CAS  PubMed  Google Scholar 

  38. Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem. 275, 9163–9169 (2000).

    Article  CAS  Google Scholar 

  39. Halpern, R., Kaveri, S.V. & Kohler, H. Human anti-phosphorylcholine antibodies share idiotopes and are self-binding. J. Clin. Invest. 88, 476–482 (1991).

    Article  CAS  Google Scholar 

  40. Brown, M., Schiffman, G. & Rittenberg, M.B. Subpopulations of antibodies to phosphocholine in human serum. J. Immunol. 132, 1323–1328 (1984).

    CAS  PubMed  Google Scholar 

  41. Schenkein, H.A. et al. Phosphorylcholine-dependent cross-reactivity between dental plaque bacteria and oxidized low-density lipoproteins. Infect. Immun. 69, 6612–6617 (2001).

    Article  CAS  Google Scholar 

  42. Hörkkö, S., Miller, E., Branch, D.W., Palinski, W. & Witztum, J.L. The epitopes for some antiphospholipid antibodies are adducts of oxidized phospholipid and β2 glycoprotein 1 (and other proteins). Proc. Natl. Acad. Sci. USA 94, 10356–10361 (1997).

    Article  Google Scholar 

  43. Silverman, G.J. et al. The dual phases of the response to neonatal exposure to a VH family-restricted staphylococcal B cell superantigen. J. Immunol. 161, 5720–5732 (1998).

    CAS  PubMed  Google Scholar 

  44. Miller, Y.I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2 and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561–1568 (2003).

    Article  CAS  Google Scholar 

  45. Tangirala, R.K., Rubin, E.M. & Palinski, W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res. 36, 2320–2328 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Kesäniemi and M. Leinonen(University of Oulu, Finland) for provision of human samples and F. Casanada, D. Dwyer, J. Juliano, E. Miller, J. Pattison and M. Silvestre for technical assistance. This work was supported by National Institutes of Health grants HL56989 (SCOR in Molecular Medicine and Atherosclerosis), HL6946, HL57505, AI40305 and the UCSD Rheumatic Disease Core Center (P30 AR47360). C.J.B. was supported by a Ph.D. scholarship from the Boehringer Ingelheim Fonds and a scholarship from the Austrian Academy of Science; E.K. was a recipient of a summer undergraduate research fellowship from the medical scientist training program at UCSD and a student investigator grant from the Stein Institute for Research in Aging. The laboratories of G.J.S., W.P. and J.L.W. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L Witztum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, C., Hörkkö, S., Dewan, A. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9, 736–743 (2003). https://doi.org/10.1038/nm876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing