Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metastasis suppressors alter the signal transduction of cancer cells

Key Points

  • Metastasis-suppressor genes are identified by their reduced expression in highly metastatic, compared with tumorigenic but poorly or non-metastatic, tumour cells. Following re-expression of a metastasis-suppressor gene in a tumour cell line, in vivo metastasis is inhibited, without a significant reduction in tumorigenicity.

  • Eight metastasis-suppressor genes have been confirmed so far. They affect many aspects of signal transduction, including pathways that are involved in invasion, growth-factor-receptor signalling, the mitogen-activated protein kinase pathway, cell–cell communication and transcription.

  • Many metastasis suppressors affect metastatic colonization — the final outgrowth of tumour cells after they have arrived at a distant site — by non-angiogenic means. Re-expression of metastasis-suppressor expression in micrometastatic tumour cells might halt their further progression with a clinical benefit.

  • The loss of metastasis-suppressor expression in metastatic lesions indicates that several aspects of signal transduction are compromised, compared with non-metastatic tumour cells. Preclinical drug testing based on primary tumour size in mice might not reflect these important differences, and metastatically competent model systems might predict clinical efficacy more accurately.

Abstract

Tumour metastasis is a significant contributor to death in cancer patients. Eight metastasis-suppressor genes that reduce the metastatic propensity of a cancer cell line in vivo without affecting its tumorigenicity have been identified. These affect important signal-transduction pathways, including mitogen-activated protein kinases, RHO, RAC and G-protein-coupled and tyrosine-kinase receptors. So how might we use this knowledge to improve the treatment of patients with cancer?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metastasis is a complex, multistep process.
Figure 2: Metastasis suppressors affect all three arms of the MAPK signalling pathway.
Figure 3: The therapeutic window in antimetastasis drug development.

Similar content being viewed by others

References

  1. Fidler, I. Critical determinants of metastasis. Semin. Cancer Biol. 12, 89–96 (2002).

    PubMed  Google Scholar 

  2. Pozzatti, R. et al. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 232, 223–227 (1986).

    CAS  PubMed  Google Scholar 

  3. Wylie, A. et al. Rodent fibroblast tumors expressing human myc and ras genes: growth, metastasis and endogenous oncogene expression. Br. J. Cancer 56, 251–259 (1987).

    Google Scholar 

  4. Chambers, A., Groom, A. & MacDonald, I. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    CAS  Google Scholar 

  5. Chambers, A. et al. Critical steps in hematogenous metastsis: an overview. Surg. Oncol. Clin. N. Am. 10, 243–255 (2001).

    CAS  PubMed  Google Scholar 

  6. Chambers, A., Naumov, G., Vantyghem, S. & Tuck, A. Molecular biology of breast cancer metastasis: clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res. 2, 400–407 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshida, B., Sokoloff, M., Welch, D. & Rinker-Schaeffer, C. Metastasis-suppressor genes: a review and perspective on an emerging field. J. Natl Cancer Inst. 92, 1717–1730 (2000).

    CAS  PubMed  Google Scholar 

  8. OkabeKado, J. et al. Inhibitory actions of nm23 proteins on induction of erythroid differentiation of human leukemia cells. Biochim. Biophys. Acta 1267, 101–106 (1995).

    Google Scholar 

  9. Shinohara, T. et al. Transduction of KAI1/CD82 cDNA promotes hematogenous spread of human lung-cancer cells in natural killer cell-depleted SCID mice. Int. J. Cancer 94, 16–23 (2001).

    CAS  PubMed  Google Scholar 

  10. Heimann, R., Ferguson, D. & Hellman, S. The relationship between nm23, angiogenesis, and the metastatic proclivity of node-negative breast cancer. Cancer Res. 58, 2766–2771 (1998).

    CAS  PubMed  Google Scholar 

  11. Schindl, M., Birner, P., Breitnecker, G. & Oberhuber, G. Downregulation of KAI1 metastasis suppressor protein is associated with a dismal prognosis in epithelial ovarian cancer. Gyn. Oncol. 83, 244–248 (2001).

    CAS  Google Scholar 

  12. Steeg, P. S. et al. Evidence for a novel gene associated with low tumor metastatic potential. J. Natl Cancer Inst. 80, 200–204 (1988).

    CAS  PubMed  Google Scholar 

  13. Dearolf, C., Tripoulas, N., Biggs, J. & Shearn, A. Molecular consequences of awdb3, a cell autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev. Biol. 129, 169–178 (1988).

    CAS  PubMed  Google Scholar 

  14. Dearolf, C., Hersperger, E. & Shearn, A. Developmental consequences of awdb3, a cell autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev. Biol. 129, 159–168 (1988).

    CAS  PubMed  Google Scholar 

  15. Kantor, J. D., McCormick, B., Steeg, P. S. & Zetter, B. R. Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res. 53, 1971–1973 (1993).

    CAS  PubMed  Google Scholar 

  16. Leone, A., Flatow, U., VanHoutte, K. & Steeg, P. S. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization, and enzymatic activity. Oncogene 8, 2325–2333 (1993).

    CAS  PubMed  Google Scholar 

  17. Howlett, A. R., Petersen, O. W., Steeg, P. S. & Bissell, M. J. A novel function for Nm23: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J. Natl Cancer Inst. 86, 1838–1844 (1994).

    CAS  PubMed  Google Scholar 

  18. Freije, J. M. P., Blay, P., MacDonald, N. J., Manrow, R. E. & Steeg, P. S. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J. Biol. Chem. 272, 5525–5532 (1997).

    CAS  PubMed  Google Scholar 

  19. Wagner, P. D., Steeg, P. S. & Vu, N. -D. Two-component kinase like activity of Nm23 correlates with its motility suppressing activity. Proc. Natl Acad. Sci. USA 94, 9000–9005 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hartsough, M. et al. Nm23-H1 metastasis suppressor phosphorylation of Kinase suppressor of ras (KSR), via a histidine protein kinase pathway. J. Biol. Chem. 277, 32389–32399 (2002). Identifies KSR as a substrate of the NM23 histidine kinase, and ties NM23 expression to the ERK–MAPK pathway.

    CAS  PubMed  Google Scholar 

  21. Morrison, D. KSR: a MAPK scaffold of the ras pathway? J. Cell Sci. 114, 1609–1612 (2001).

    CAS  PubMed  Google Scholar 

  22. Cacace, A. et al. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen activated protein kinase binding and KSR overexpression. Mol. Cell. Biol. 19, 229–240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Volle, D. et al. Phosphorylation of the kinase suppressor of ras by associated kinases. Biochemistry 38, 5130–5137 (1999).

    CAS  PubMed  Google Scholar 

  24. Adeyinka, A. et al. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin. Cancer Res. 8, 1747–1753 (2002).

    CAS  PubMed  Google Scholar 

  25. Albanell, J. et al. Activated extracellular signal-related kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments. Cancer Res. 61, 6500–6510 (2001).

    CAS  PubMed  Google Scholar 

  26. Webb, C., VanAelst, L., Wigler, M. & VandeWoude, G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl Acad. Sci. USA 95, 8773–8778 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward, Y. et al. Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific exchange factor pathways. Mol. Cell. Biol. 21, 5958–5969 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Spector, M. et al. Activation of mitogen-activated protein kinases is required for alpha (1)-adrenergic agonist-induced cell scattering in transfected HepG2 cells. Exp. Cell Res. 258, 109–120 (2000).

    CAS  PubMed  Google Scholar 

  29. Simon, C. et al. PD 098059, an inhibitor of ERK1 activation, attenuates the in vivo invasiveness of head and neck squamous cell carcinoma. Br. J. Cancer 80, 1412–1419 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yao, J. et al. Multiple signaling pathways involved in activation of matrix metalloproteinase-9 (MMP-9) by heregulin-β1 in human breast cancer cells. Oncogene 20, 8066–8074 (2001).

    CAS  PubMed  Google Scholar 

  31. Ellenrieder, V. et al. Transforming growth factor-β1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-related kinase 2 activation. Cancer Res. 61, 4222–4228 (2001).

    CAS  PubMed  Google Scholar 

  32. Kim, H. et al. Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res. 61, 2833–2837 (2001).

    CAS  PubMed  Google Scholar 

  33. Yamada, S. et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res. 62, 6717–6723 (2002).

    CAS  PubMed  Google Scholar 

  34. Robinson, V., Hickson, J., Griend, D. V., Dubauskas, Z. & Rinker–Schaeffer, C. MKK4 and metastasis suppression: a marriage of signal transduction and metastasis research. Clin. Exp. Metast. (in the press).

  35. Yang, X. et al. Overexpression of KAI1 supprresses in vitro invasiveness and in vivo metastasis in breast cancer cells. Cancer Res. 61, 5284–5288 (2001).

    CAS  PubMed  Google Scholar 

  36. Bienstock, R. & Barrett, J. KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners, integrins, caherins and cell-surface receptor proteins. Mol. Carcinog. 32, 139–153 (2001).

    CAS  PubMed  Google Scholar 

  37. Odintsova, E., Sugiura, T. & Berditchevski, F. Attenuation of EGF receptor signaling by a metastasis supressor, the tetraspanin CD82/KAI-1. Curr. Biol. 10, 1009–1012 (2000). Mechanistic analysis of KAI1 suppressor inhibition of epidermal growth factor receptor signalling.

    CAS  PubMed  Google Scholar 

  38. Bienstock, R. & Barrett, J. Kai1, a prostate metastais suppressor: prediction of solvated structure and interactions with binding partners, integrins, cadherins, and cell-surface receptor proteins. Mol. Carcinog. 32, 139–153 (2001).

    CAS  PubMed  Google Scholar 

  39. Kondapaka, S., Fridman, R. & Reddy, K. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int. J. Cancer 70, 722–726 (1997).

    CAS  PubMed  Google Scholar 

  40. Turner, T., Chen, P., Goodly, L. & Wells, A. EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin. Exp. Metast. 14, 409–418 (1996).

    CAS  Google Scholar 

  41. Kaufmann, A., Lichtner, R., Schirrmacher, V. & Khazaie, K. Induction of apoptosis by EGF receptor in rat mammary adenocarcinoma cells coincides with enhanced spontaneous tumour metastasis. Oncogene 13, 2349–2358 (1996).

    CAS  PubMed  Google Scholar 

  42. Lichtner, R. et al. Ligand-mediated activation of ectopic EGF receptor promotes matrix protein adhesion and lung colonization of rat mammary adenocarcinoma cells. Oncogene 10, 1823–1832 (1995).

    CAS  PubMed  Google Scholar 

  43. Mendelsohn, J. & Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550–6565 (2000).

    CAS  PubMed  Google Scholar 

  44. Giannelli, G. et al. Role of the α3β1 and α6β4 integrins in tumor invasion. Clin. Exp. Metast. 19, 217–233 (2002).

    CAS  Google Scholar 

  45. Cooper, C., Chay, C. & Pienta, K. The role of αvβ3 in prostate cancer progression. Neoplasia 4, 191–194 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ziober, B., Silverman, S. & Kramer, R. Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit. Rev. Oral Biol. Med. 12, 499–510 (2001).

    CAS  PubMed  Google Scholar 

  47. Hunter, K. et al. Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis supressor gene Brms1. Cancer Res. 61, 8866–8872 (2001).

    CAS  PubMed  Google Scholar 

  48. Samant, R. et al. Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin. Exp. Metast. 18, 683–693 (2001).

    Google Scholar 

  49. Saunders, M. et al. Breast cancer metastastic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res. 61, 1765–1767 (2001). First demonstration that a metastasis suppressor can affect intercellular communication.

    CAS  PubMed  Google Scholar 

  50. Lee, J. & Welch, D. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, Kiss-1. Cancer Res. 57, 2384–2387 (1997).

    CAS  PubMed  Google Scholar 

  51. Kotani, M. et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GRP54. J. Biol. Chem. 276, 34631–34636 (2001).

    CAS  PubMed  Google Scholar 

  52. Muir, A. et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide Kiss-1. J. Biol. Chem. 276, 28969–28975 (2001).

    CAS  PubMed  Google Scholar 

  53. Ohtaki, T. et al. Metastasis suppressor Kiss-1 encodes a peptide ligand of a G-protein-coupled receptor. Nature 411, 613–617 (2001). Demonstration that a KiSS1 -encoded secreted peptide mediates its metastasis-suppressive effect.

    CAS  PubMed  Google Scholar 

  54. Shih, J. -Y. et al. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J. Natl Cancer Inst. 93, 1392–1400 (2001).

    CAS  PubMed  Google Scholar 

  55. Steeg, P. Collapsin response mediator protein-1: a lung cancer invasion suppressor with nerve. J. Natl Cancer Inst. 93, 1364–1365 (2001).

    CAS  PubMed  Google Scholar 

  56. Gildea, J. et al. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res. 62, 6418–6423 (2002). Identification and functional demonstration of RHOGDI2 as a metastasis-suppressor gene. Demonstration of the use of microarray technology to identify potential metastasis-suppressor genes.

    CAS  PubMed  Google Scholar 

  57. Jaffe, A. & Hall, A. Rho GTPases in transformation and metastasis. Adv. Cancer Res. 65, 57–79 (2002).

    Google Scholar 

  58. Schmitz, A., Govek, E., Bottner, B. & VanAelst, L. RhoGTPases: signaling, migration and invasion. Exp. Cell Res. 261, 1–12 (2000).

    CAS  PubMed  Google Scholar 

  59. Evers, E. et al. Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 36, 1269–1274 (2000).

    CAS  PubMed  Google Scholar 

  60. Aozarena, I., Matallanas, D. & Crespo, P. Maintenance of Cdc42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. J. Biol. Chem. 276, 21878–21884 (2001).

    Google Scholar 

  61. Su, L., Knoblauch, R. & Garabedian, M. Rho GTPases as modulators of the estrogen receptor transcriptional response. J. Biol. Chem. 276, 3231–3237 (2001).

    CAS  PubMed  Google Scholar 

  62. Welch, D. et al. Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenitiy. Oncogene 9, 255–262 (1994).

    CAS  PubMed  Google Scholar 

  63. Miele, M. E. et al. Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (nm23). Clin. Exp. Metastasis 15, 259–265 (1997).

    CAS  PubMed  Google Scholar 

  64. Lee, J. et al. Kiss-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl Cancer Inst. 88, 1731–1737 (1996). The identification and functional demonstration of the KiSS1 metastasis-suppressor gene.

    CAS  PubMed  Google Scholar 

  65. Ryu, S., Zhou, S., Ladurner, A. & Tijan, R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397, 446–450 (1999).

    CAS  PubMed  Google Scholar 

  66. Junn, E. et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 164, 6287–6295 (2000).

    CAS  PubMed  Google Scholar 

  67. Miyazaki, T. et al. Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer 89, 955–962 (2000).

    CAS  PubMed  Google Scholar 

  68. Cropp, C. et al. NME1 protein expression and loss of heterozygosity mutations in primary human breast tumors. J. Natl Cancer Inst. 86, 1167–1169 (1994).

    CAS  PubMed  Google Scholar 

  69. Shinohara, T. et al. Nuclear factor-κB-dependent expression of metastasis suppressor Kai1/CD82 gene in lung cancer cell lines expressing mutant p53. Cancer Res. 61, 673–678 (2001).

    CAS  PubMed  Google Scholar 

  70. Mashimo, T. et al. The expression of the KAI-1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc. Natl Acad. Sci USA 95, 11307–11311 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Akita, H. et al. Induction of KAI-1 expression in metastatic cancer cells by phorbol esters. Cancer Lett. 153, 79–83 (2000).

    CAS  PubMed  Google Scholar 

  72. Sekita, N. et al. Epigenetic regulation of the KAI1 metastasis suppressor gene in human prostate cancer cell lines. Jpn. J. Cancer Res. 92, 947–951 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hartsough, M. et al. Elevation of breast carcinoma nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res. 61, 2320–2327 (2001). Proposes the identification of drugs to elevate metastasis-suppressor expression. DNA methylation inhibition elevated NM23 expression and blocked in vitro motility.

    CAS  PubMed  Google Scholar 

  74. Ouatas, T., Clare, S., Hartsough, M., DeLaRosa, A. & Steeg, P. A cassette of mammary-specific transcription factor binding sites contributes to nm23-H1 promoter activity in human breast carcinoma cell lines. Clin. Exp. Metastasis 19, 35–42 (2002).

    CAS  PubMed  Google Scholar 

  75. Liu, F., Qi, H. -L. & Chen, H. -L. Effects of all-trans retinoic acid and epidermal growth factor on the expression of nm23-H1 in human hepatocarcinoma cells. J. Cancer Res. Clin. Oncol. 126, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  76. Jiang, W., Hiscox, S., Bryce, R., Horrobin, D. & Mansel, R. The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br. J. Cancer 77, 731–738 (1988).

    Google Scholar 

  77. Greenlee, R., Hill-Harmon, M., Murray, T. & Thun, M. Cancer Statistics, 2001. CA Cancer J. Clin. 51, 15–36 (2001).

    CAS  PubMed  Google Scholar 

  78. Chekmareva, M. et al. Chromosome 17-mediated dormancy of AT6. 1 prostate cancer micrmetastases. Cancer Res. 58, 4963–4969 (1998).

    CAS  PubMed  Google Scholar 

  79. Goldberg, S., Harms, J., Quon, K. & Welch, D. Metastasis suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin. Exp. Metastasis 58, 4963–4969 (1999). References 78 and 79 demonstrate the important concept that metastasis suppressors inhibit metastatic colonization — the final outgrowth of tumour cells at a distant site.

    Google Scholar 

  80. Shevde, L. et al. Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp. Cell Res. 273, 229–239 (2002).

    CAS  PubMed  Google Scholar 

  81. Johnson, J. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rizzo, M. & Romero, G. Pharmacological importance of phospholipase D and phosphtidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol. Therapeut. 94, 35–50 (2002).

    CAS  Google Scholar 

  83. Yart, A., Chap, H. & Raynal, P. Phosphoinositide 3-kinases in lysophosphatidic acid signaling: regulation and cross-talk with the Ras/mitogen-activated protein kinase pathway. Biochem. Biophys. Acta 1582, 107–111 (2002).

    CAS  PubMed  Google Scholar 

  84. Chen, J., Baskerville, C., Han, Q., Pan, Z. & Huang, S. αv integrin, p38 mitogen-activated protein kinase, and urokinase plasminogen activator are functionally linked in invasive breast cancer cells. J. Biol. Chem. 276, 47901–47905 (2001).

    CAS  PubMed  Google Scholar 

  85. Elder, D., Halton, D., Playle, L. & Paraskeva, C. The MEK/ERK pathway mediated COX-2-selective NSAID-induced apoptosis and induced COX-2 protein expression in colorectal carcinoma cells. Int. J. Cancer 99, 323–327 (2002).

    CAS  PubMed  Google Scholar 

  86. Magne, N. et al. Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD 1839 ('Iressa'). Br. J. Cancer 86, 1518–1523 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sarker, M., Ruiz-Ruiz, C., Robledo, G. & Lopez-Rivas, A. Stimulation of the mitogen-activated protein kinase pathway antagonizes TRAIL-induced apoptosis downstream of BID cleavage in human breast cancer MCF-7 cells. Oncogene 21, 4323–4327 (2002).

    CAS  PubMed  Google Scholar 

  88. MacKeigan, J. et al. Inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of taxol and mitogen-activated protein kinase kinase inhibition. Clin. Cancer Res. 8, 2091–2099 (2002).

    CAS  PubMed  Google Scholar 

  89. Orlowski, R., Small, G. & Shi, Y. Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-meidated apoptosis. J. Biol. Chem. 277, 27864–27871 (2002).

    CAS  PubMed  Google Scholar 

  90. Sledge, G. Vascular endothelial growth factor in breast cancer: biologic and therapeutic aspects. Semin. Oncol. 29, 104–110 (2002).

    CAS  PubMed  Google Scholar 

  91. Folkman, J. Seminars in medicine of the Beth Israel Hospital, Boston: clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763 (1995).

    CAS  PubMed  Google Scholar 

  92. Wong, C. et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61, 333–338 (2001).

    CAS  PubMed  Google Scholar 

  93. Ladeda, V., Adam, A., Puricello, L. & Joffe, E. Apoptotic cell death in mammary adenocarcinoma cells is prevented by soluble factors present in the target organ of metastasis. Breast Cancer Res. Treat. 69, 39–51 (2001).

    CAS  PubMed  Google Scholar 

  94. Zavadil, J. et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc. Natl Acad. Sci. USA 98, 6686–6691 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kiefer, J. & Farach-Carson, M. Type I collagen-mediated proliferation of PC3 prostate carcinoma cell line: implications for enhanced growth in the bone microenvironment. Matrix Biol. 20, 429–437 (2001).

    CAS  PubMed  Google Scholar 

  96. Zvibel, I., Brill, S., Halpern, Z. & Papa, M. Hepatocyte extracellular matrix modulates expression of growth factors and growth factor receptors in human colon cancer cells. Exp. Cell Res. 245, 123–131 (1998).

    CAS  PubMed  Google Scholar 

  97. Elion, E. MAP Kinase Modules in Signaling 119–129 (Academic Press, San Diego, 2002).

    Google Scholar 

  98. Wang, W. et al. Sequential activation of the MEK-extracellular signal regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol. Cell. Biol. 22, 3389–3403 (2002).

    PubMed  PubMed Central  Google Scholar 

  99. Shields, J., Mehta, H., Pruitt, K. & Der, C. Opposing roles of the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in Ras–mediated downregulation or tropomyosin. Mol. Cell. Biol. 22, 2304–2317 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Leone, A. et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65, 25–35 (1991). The first functional demonstration of a metastasis-suppressor gene.

    CAS  PubMed  Google Scholar 

  101. Baba, H. et al. Two isotypes of murine nm23/nucleoside diphosphate kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a murine melanoma line. Cancer Res. 55, 1977–1981 (1995).

    CAS  PubMed  Google Scholar 

  102. Parhar, R. S. et al. Effects of cytokine mediated modulation of Nm23 expression on the invasion and metastatic behavior of B16F10 melanoma cells. Int. J. Cancer 60, 204–210 (1995).

    CAS  PubMed  Google Scholar 

  103. Fukuda, M. et al. Metastatic potential of rat mammary adenocarcinoma cells associated with decreased expression of nucleoside diphosphate kinase/nm23: reduction by transfection of NDP kinase a isoform, an nm23-H2 gene homolog. Int. J. Cancer 65, 531–537 (1996).

    CAS  PubMed  Google Scholar 

  104. Bhujwalla, Z. et al. Nm23-transfected MDA-MB-435 human breast carcinoma cells form tumors with altered phospholipid metabolism and pH: a 31P nuclear magnetic resonance study in vivo and in vitro. Magnetic Res. Med. 41, 897–903 (1999).

    CAS  Google Scholar 

  105. Russell, R. et al. Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines. Br. J. Cancer 78, 710–717 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tagashira, H., Hamazaki, K., Tanaka, N., Gao, C. & Namba, M. Reduced metastatic potential and c-myc overexpression of colon adenocarcinoma cells (Colon 26 line) transfected with nm23-R2 rat nucleoside diphosphate kinase a isoform. Int. J. Mol. Med. 2, 65–68 (1998).

    CAS  PubMed  Google Scholar 

  107. Miyazaki, H. et al. Overexpression of nm23-H2/NDP Kinase B in a human oral squamous cell carcinoma cell line results in reduced metastasis, differentiated phenotype in the metastatic site, and growth factor-independent proliferative activity in culture. Clin. Cancer Res. 5, 4301–4307 (1999).

    CAS  PubMed  Google Scholar 

  108. Yoshida, B. et al. Mitogen-activated protein kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res. 59, 5483–5487 (1999). The identification and functional demonstration of MKK4 as a metastasis-suppressor gene. This paper links metastasis suppressors to the p38 and JNK arms of the MAPK pathway.

    CAS  PubMed  Google Scholar 

  109. Dong, J. et al. Kai1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268, 884–886 (1995). The identification and functional demonstration of the KAI1 metastasis-suppressor gene.

    CAS  PubMed  Google Scholar 

  110. Seraj, M., Samant, R., Verderame, M. & Welch, D. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res. 60, 2764–2769 (2000). The identification and functional demonstration of the BRMS1 metastasis-suppressor gene.

    CAS  PubMed  Google Scholar 

  111. Goldberg, S. et al. Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

BRMS1

CRMP1

CRSP3

EGF

EGFR

hOT7T175

KAI1

KiSS1

MAPK

MEK

MKK4

MYC

NM23

RAS

RB

TGF-β

VDUP1

Glossary

METASTASIS ASSAYS

In spontaneous metastasis assays, the tumour cells are inoculated either subcutaneously or orthotopically in animals, and spontaneous metastases from this primary site to distant locations are monitored. In experimental metastasis assays, tumour cells are injected into the bloodstream (for example, intravenously for lung metastasis, into the left heart ventricle for bone metastases and into the portal vein for liver metastases), thereby circumventing the first steps in the metastatic process.

EXTRACELLULAR MATRIX

A complex, three-dimensional network of very large macromolecules that provides contextual information and an architectural scaffold for cellular adhesion and migration.

EXTRAVASATION

The passage from blood or lymph vessel into tissue.

DIFFERENTIAL DISPLAY

A gel-based technique that is used to survey genome-wide levels of transcription.

SUBTRACTIVE HYBRIDIZATION

A technique that is used for identifying differentially expressed transcripts between two sources. cDNA from one source is hybridized to mRNA from another source to remove comparably expressed transcripts, and the resulting differentially expressed cDNAs are separated by chromatography.

MICROARRAY

An array of polymerase chain reaction products (corresponding to either genomic or cDNA sequence) that is deposited onto solid glass slides.

SERIAL ANALYSIS OF GENE EXPRESSION

(SAGE). A technique for the identification and quantitation of transcripts from two sources, including differentially expressed genes. SAGE is based on the isolation of short tags from a defined location within a transcript, which are sequenced as concademers and quantitated.

SCAFFOLD PROTEIN

Scaffolds are thought to provide docking sites for pathway proteins, to participate in intracellular re-localization, and to influence the specificity and duration of signalling.

EPITHELIAL–MESENCHYMAL TRANSITION

The conversion from an epithelial to a mesenchymal phenotype, which is a normal component of embryonic development. In carcinomas, this transformation results in altered cell morphology, the expression of mesenchymal proteins and increased invasiveness.

GLEASON GRADE

The 'gold standard' for grading prostate cancer, which is used by pathologists worldwide. This system involves assessing both the predominant and secondary pattern of gland formation within a prostate sample. The sample is scored to create a Gleason 'sum', ranging from 2 to 10, with the highest number indicating the most aggressive cancer. Patients with a Gleason sum of less than 6 typically respond well to therapy, whereas patients with a Gleason sum of greater than 7 usually have poor outcomes.

INTEGRINS

A family of more than 20 heterodimeric cell-surface extracellular-matrix receptors. They connect the structure of the extracellular matrix with the cytoskeleton and can transmit signalling information bidirectionally.

GAP JUNCTIONS

Gap junctions are membrane-spanning channels that are composed of connexin (Cx) proteins that allow the passage of small (1,000 molecular weight) signalling molecules between cells. Homotypic gap junctions exist between the same cell type and heterotypic gap junctions exist between distinct cell types.

LAMELLIPODIA

Thin, sheet-like cell extensions that are found at the leading edge of crawling cells or growth cones.

PARACRINE FACTORS

A form of bioregulation in which a secretion produced by one cell type in a tissue diffuses through the tissue and affects another cell type in the same tissue.

PHARMACOKINETIC

The study of the time course of a drug and its metabolites in the body after administration by any route.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeg, P. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3, 55–63 (2003). https://doi.org/10.1038/nrc967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing