Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The evolution of the TOR pathway and its role in cancer

Abstract

The target of rapamycin (TOR) pathway is highly conserved among eukaryotes and has evolved to couple nutrient sensing to cellular growth. TOR is found in two distinct signaling complexes in cells, TOR complex 1 (TORC1) and TOR complex 2 (TORC2). These complexes are differentially regulated and act as effectors for the generation of signals that drive diverse cellular processes such as growth, proliferation, protein synthesis, rearrangement of the cytoskeleton, autophagy, metabolism and survival. Mammalian TOR (mTOR) is very important for development in embryos, while in adult organisms it is linked to aging and lifespan effects. In humans, the mTOR pathway is implicated in the tumorigenesis of multiple cancer types and its deregulation is associated with familial cancer syndromes. Because of its high biological relevance, different therapeutic strategies have been developed to target this signaling cascade, resulting in the emergence of unique pharmacological inhibitors that are either already approved for use in clinical oncology or currently under preclinical or clinical development. Multimodal treatment strategies that simultaneously target multiple nodes of the pathway and/or negative feedback regulatory loops may ultimately provide the best therapeutic advantage in targeting this pathway for the treatment of malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010; 11: 453–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Heitman J, Movva NR, Hall MN . Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253: 905–909.

    CAS  PubMed  Google Scholar 

  3. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369: 756–758.

    CAS  PubMed  Google Scholar 

  4. Chen Y, Chen H, Rhoad AE, Warner L, Caggiano TJ, Failli A et al. A putative sirolimus (rapamycin) effector protein. Biochem Biophys Res Commun 1994; 203: 1–7.

    CAS  PubMed  Google Scholar 

  5. Chiu MI, Katz H, RAPT1 Berlin V . a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 1994; 91: 12574–12578.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabatini DM, Pierchala BA, Barrow RK, Schell MJ, Snyder SH . The rapamycin and FKBP12 target (RAFT) displays phosphatidylinositol 4-kinase activity. J Biol Chem 1995; 270: 20875–20878.

    CAS  PubMed  Google Scholar 

  7. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270: 815–822.

    CAS  PubMed  Google Scholar 

  8. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabatini DM . mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006; 6: 729–734.

    CAS  PubMed  Google Scholar 

  10. Bhaskar PT, Hay N . The two TORCs and Akt. Dev Cell 2007; 12: 487–502.

    CAS  PubMed  Google Scholar 

  11. Ma XM, Blenis J . Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307–318.

    PubMed  Google Scholar 

  12. Kaur S, Sassano A, Dolniak B, Joshi S, Majchrzak-Kita B, Baker DP et al. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci USA 2008; 105: 4808–4813.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaur S, Sassano A, Majchrzak-Kita B, Baker DP, Su B, Fish EN et al. Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Proc Natl Acad Sci USA 2012; 109: 7723–7728.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 2011; 4: ra10.

    PubMed  Google Scholar 

  15. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    CAS  PubMed  Google Scholar 

  16. Platanias LC . Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005; 5: 375–386.

    CAS  PubMed  Google Scholar 

  17. Schalm SS, Blenis J . Identification of a conserved motif required for mTOR signaling. Curr Biol 2002; 12: 632–639.

    CAS  PubMed  Google Scholar 

  18. Schalm SS, Fingar DC, Sabatini DM, Blenis JTOS . motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003; 13: 797–806.

    CAS  PubMed  Google Scholar 

  19. Ma XM, Yoon SO, Richardson CJ, Julich K, Blenis J . SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008; 133: 303–313.

    CAS  PubMed  Google Scholar 

  20. Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004; 23: 1761–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG . Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20: 4370–4379.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Ding Q, Yen CJ, Xia W, Izzo JG, Lang JY et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell 2012; 21: 374–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haghighat A, Mader S, Pause A, Sonenberg N . Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 1995; 14: 5701–5709.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hay N, Sonenberg N . Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926–1945.

    CAS  PubMed  Google Scholar 

  25. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 1997; 272: 26457–26463.

    CAS  PubMed  Google Scholar 

  27. Inoki K, Li Y, Zhu T, Wu J, Guan KL . TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4: 648–657.

    CAS  PubMed  Google Scholar 

  28. Lekmine F, Uddin S, Sassano A, Parmar S, Brachmann SM, Majchrzak B et al. Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J Biol Chem 2003; 278: 27772–27780.

    CAS  PubMed  Google Scholar 

  29. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179–193.

    CAS  PubMed  Google Scholar 

  30. Potter CJ, Pedraza LG, Xu T . Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002; 4: 658–665.

    CAS  PubMed  Google Scholar 

  31. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004; 101: 13489–13494.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–968.

    CAS  PubMed  Google Scholar 

  33. Inoki K, Kim J, Guan KL . AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012; 52: 381–400.

    CAS  PubMed  Google Scholar 

  34. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    CAS  PubMed  Google Scholar 

  35. Inoki K, Zhu T, Guan KL . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    CAS  PubMed  Google Scholar 

  36. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007; 67: 3043–3053.

    CAS  PubMed  Google Scholar 

  38. Budanov AV, Karin M . p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134: 451–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 2004; 101: 12130–12135.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 2003; 278: 10189–10194.

    CAS  PubMed  Google Scholar 

  41. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282: 20329–20339.

    CAS  PubMed  Google Scholar 

  42. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903–915.

    CAS  PubMed  Google Scholar 

  43. Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2007; 2: e1217.

    PubMed  PubMed Central  Google Scholar 

  44. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    CAS  PubMed  Google Scholar 

  45. Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG . PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 2007; 282: 24514–24524.

    CAS  PubMed  Google Scholar 

  46. Hong-Brown LQ, Brown CR, Kazi AA, Huber DS, Pruznak AM, Lang CH . Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction. J Cell Biochem 2010; 109: 1172–1184.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang L, Harris TE, Roth RA, Lawrence JC . PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007; 282: 20036–20044.

    CAS  PubMed  Google Scholar 

  48. Nobukuni T, Kozma SC, Thomas G . hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr Opin Cell Biol 2007; 19: 135–141.

    CAS  PubMed  Google Scholar 

  49. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL . Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10: 935–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–1501.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 2005; 102: 14238–14243.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8: 688–699.

    CAS  PubMed  Google Scholar 

  53. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    CAS  PubMed  Google Scholar 

  54. Byfield MP, Murray JT . Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005; 280: 33076–33082.

    CAS  PubMed  Google Scholar 

  55. Egan D, Kim J, Shaw RJ, Guan KL . The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011; 7: 643–644.

    PubMed  Google Scholar 

  56. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331: 456–461.

    CAS  PubMed  Google Scholar 

  57. Zhao J, Brault JJ, Schild A, Goldberg AL . Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 2008; 4: 378–380.

    CAS  PubMed  Google Scholar 

  58. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27: 1932–1943.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Garcia-Martinez JM, Alessi DR . mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008; 416: 375–385.

    CAS  PubMed  Google Scholar 

  60. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL . Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27: 1919–1931.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  62. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11: 859–871.

    CAS  PubMed  Google Scholar 

  63. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006; 16: 1865–1870.

    CAS  PubMed  Google Scholar 

  64. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127: 125–137.

    CAS  PubMed  Google Scholar 

  65. Yang Q, Inoki K, Ikenoue T, Guan KL . Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 2006; 20: 2820–2832.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen CH . Sarbassov dos D. The mTOR (mammalian target of rapamycin) kinase maintains integrity of mTOR complex 2. J Biol Chem 2011; 286: 40386–40394.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schroder W, Cloonan N, Bushell G, Sculley T . Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene. Gene 2004; 339: 17–23.

    CAS  PubMed  Google Scholar 

  68. Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 2007; 282: 25604–25612.

    CAS  PubMed  Google Scholar 

  69. Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR . Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 2011; 436: 169–179.

    CAS  PubMed  Google Scholar 

  70. Aimbetov R, Chen CH, Bulgakova O, Abetov D, Bissenbaev AK, Bersimbaev RI et al. Integrity of mTORC2 is dependent on the rictor Gly-934 site. Oncogene 2012; 31: 2115–2120.

    CAS  PubMed  Google Scholar 

  71. Jones KT, Greer ER, Pearce D, Ashrafi K . Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol 2009; 7: e60.

    PubMed  Google Scholar 

  72. Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G . Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 2009; 23: 496–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE, Mayo MW . Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem 2012; 287: 581–588.

    CAS  PubMed  Google Scholar 

  74. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10: 457–468.

    CAS  PubMed  Google Scholar 

  75. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN . TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 1994; 5: 105–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN . Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993; 73: 585–596.

    CAS  PubMed  Google Scholar 

  77. Reinke A, Anderson S, McCaffery JM, Yates J, Aronova S, Chu S et al. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 2004; 279: 14752–14762.

    CAS  PubMed  Google Scholar 

  78. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN . TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 1996; 7: 25–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 2007; 26: 663–674.

    CAS  PubMed  Google Scholar 

  80. Noda T, Ohsumi Y . Tor a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998; 273: 3963–3966.

    CAS  PubMed  Google Scholar 

  81. Schmidt A, Kunz J, Hall MN . TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 1996; 93: 13780–13785.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Helliwell SB, Howald I, Barbet N, Hall MN . TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 1998; 148: 99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jia K, Chen D, Riddle DL . The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004; 131: 3897–3906.

    CAS  PubMed  Google Scholar 

  84. Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J . TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 2002; 12: 1448–1461.

    CAS  PubMed  Google Scholar 

  85. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F . Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003; 426: 620.

    CAS  PubMed  Google Scholar 

  86. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C . Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007; 6: 95–110.

    CAS  PubMed  Google Scholar 

  87. Pan KZ . Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 2007; 6: 111–119.

    CAS  PubMed  Google Scholar 

  88. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C . A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4: e24.

    PubMed  PubMed Central  Google Scholar 

  89. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N . Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009; 296: E592–E602.

    CAS  PubMed  Google Scholar 

  90. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E . Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 2000; 14: 2689–2694.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP . Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000; 14: 2712–2724.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S . Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 2004; 14: 885–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 2009; 139: 149–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 2008; 181: 655–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lindmo K, Stenmark H . Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 2006; 119: 605–614.

    CAS  PubMed  Google Scholar 

  96. Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010; 327: 1223–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24: 9508–9516.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N, Sabatini D et al. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci USA 2001; 98: 13796–13801.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004; 24: 6710–6718.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA . Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 2006; 11: 583–589.

    CAS  PubMed  Google Scholar 

  101. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G . Drosophila S6 kinase: a regulator of cell size. Science 1999; 285: 2126–2129.

    CAS  PubMed  Google Scholar 

  102. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J et al. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 2004; 24: 3112–3124.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200–205.

    CAS  PubMed  Google Scholar 

  104. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122–1128.

    CAS  PubMed  Google Scholar 

  105. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296–1302.

    CAS  PubMed  Google Scholar 

  106. Saci A, Cantley LC, Carpenter CL . Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011; 42: 50–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Agarwal NK, Chen CH, Cho H, Boulbes DR, Spooner E, Sarbassov DD . Rictor regulates cell migration by suppressing RhoGDI2. Oncogene 2012, (epub ahead of print 9 July 2012 doi:10.1038/onc.2012.287).

    PubMed  PubMed Central  Google Scholar 

  108. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004; 166: 213–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shah OJ, Wang Z, Hunter T . Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004; 14: 1650–1656.

    CAS  PubMed  Google Scholar 

  110. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332: 1317–1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332: 1322–1326.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 2010; 18: 592–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang Q, Inoki K, Kim E, Guan KL . TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci USA 2006; 103: 6811–6816.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang J, Wu S, Wu CL, Manning BD . Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 2009; 69: 6107–6114.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dibble CC, Asara JM, Manning BD . Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 2009; 29: 5657–5670.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Laplante M, Sabatini DM . An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009; 19: R1046–R1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Laplante M, Horvat S, Festuccia WT, Birsoy K, Prevorsek Z, Efeyan A et al. DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab 2012; 16: 202–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mahalingam M, Cooper JA . Phosphorylation of mammalian eIF4E by Mnk1 and Mnk2: tantalizing prospects for a role in translation. Prog Mol Subcell Biol 2001; 27: 132–142.

    CAS  PubMed  Google Scholar 

  120. Pyronnet S . Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 2000; 60: 1237–1243.

    CAS  PubMed  Google Scholar 

  121. Altman JK, Glaser H, Sassano A, Joshi S, Ueda T, Watanabe-Fukunaga R et al. Negative regulatory effects of Mnk kinases in the generation of chemotherapy-induced antileukemic responses. Mol Pharmacol 2010; 78: 778–784.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang X, Yue P, Chan CB, Ye K, Ueda T, Watanabe-Fukunaga R et al. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation. Mol Cell Biol 2007; 27: 7405–7413.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr S et al. Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res 2008; 68: 8322–8332.

    CAS  PubMed  Google Scholar 

  125. Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R et al. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 2009; 69: 565–572.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bjornsti MA, Houghton PJ . The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004; 4: 335–348.

    CAS  PubMed  Google Scholar 

  127. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391: 184–187.

    CAS  PubMed  Google Scholar 

  128. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998; 18: 38–43.

    CAS  PubMed  Google Scholar 

  129. Sanchez-Cespedes M . The role of LKB1 in lung cancer. Fam Cancer 2011; 10: 447–453.

    CAS  PubMed  Google Scholar 

  130. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.

    CAS  PubMed  Google Scholar 

  131. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–99.

    CAS  PubMed  Google Scholar 

  132. European Chromosome 16 Tuberous Sclerosis C, Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75: 1305–1315.

    Google Scholar 

  133. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277: 805–808.

    CAS  PubMed  Google Scholar 

  134. Green AJ, Smith M, Yates JR . Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet 1994; 6: 193–196.

    CAS  PubMed  Google Scholar 

  135. Green AJ, Johnson PH, Yates JR . The tuberous sclerosis gene on chromosome 9q34 acts as a growth suppressor. Hum Mol Genet 1994; 3: 1833–1834.

    CAS  PubMed  Google Scholar 

  136. Kobayashi T, Minowa O, Kuno J, Mitani H, Hino O, Noda T . Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999; 59: 1206–1211.

    CAS  PubMed  Google Scholar 

  137. Kobayashi T, Minowa O, Sugitani Y, Takai S, Mitani H, Kobayashi E et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA 2001; 98: 8762–8767.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E et al. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 2012; 5: ra24.

    PubMed  PubMed Central  Google Scholar 

  139. White E . Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12: 401–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535–546.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Camposano SE, Greenberg E, Kwiatkowski DJ, Thiele EA . Distinct clinical characteristics of tuberous sclerosis complex patients with no mutation identified. Ann Hum Genet 2009; 73: 141–146.

    CAS  PubMed  Google Scholar 

  142. Vivanco I, Sawyers CL . The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    CAS  PubMed  Google Scholar 

  143. Mavrakis KJ, Zhu H, Silva RL, Mills JR, Teruya-Feldstein J, Lowe SW et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008; 22: 2178–2188.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004; 10: 484–486.

    CAS  PubMed  Google Scholar 

  145. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    CAS  PubMed  Google Scholar 

  146. Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell 2009; 16: 439–446.

    CAS  PubMed  Google Scholar 

  147. Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV . Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 2004; 279: 3327–3339.

    CAS  PubMed  Google Scholar 

  148. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010; 18: 39–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009; 15: 148–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hietakangas V, Cohen SM . TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer 2008; 8: 282.

    PubMed  PubMed Central  Google Scholar 

  151. Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007; 67: 11712–11720.

    CAS  PubMed  Google Scholar 

  152. Johnstone CN, Castellvi-Bel S, Chang LM, Sung RK, Bowser MJ, Pique JM et al. PRR5 encodes a conserved proline-rich protein predominant in kidney: analysis of genomic organization, expression, and mutation status in breast and colorectal carcinomas. Genomics 2005; 85: 338–351.

    CAS  PubMed  Google Scholar 

  153. Pei L, Xie P, Zhou E, Yang Q, Luo Y, Tang Z . Overexpression of DEP domain containing mTOR-interacting protein correlates with poor prognosis in differentiated thyroid carcinoma. Mol Med Rep 2011; 4: 817–823.

    CAS  PubMed  Google Scholar 

  154. Yen CH, Lu YC, Li CH, Lee CM, Chen CY, Cheng MY et al. Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma. Mol Med 2012; 18: 286–296.

    CAS  PubMed  Google Scholar 

  155. Zhao Y, Xiong X, Sun Y . DEPTOR an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 2011; 44: 304–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010; 107: 12469–12474.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16: 205–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ly C, Arechiga AF, Melo JV, Walsh CM, Ong ST . Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 2003; 63: 5716–5722.

    CAS  PubMed  Google Scholar 

  159. Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S et al. Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB J 2005; 19: 960–962.

    CAS  PubMed  Google Scholar 

  160. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 2004; 101: 3130–3135.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    CAS  PubMed  Google Scholar 

  162. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012; 488: 100–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012; 488: 49–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012; 488: 106–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012; 488: 43–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012; 123: 465–472.

    CAS  PubMed  Google Scholar 

  167. Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJ, Witt H et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 2012; 482: 529–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2010; 2: 51ra70.

    PubMed  PubMed Central  Google Scholar 

  169. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC . PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 2008; 22: 436–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Baryawno N, Sveinbjornsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI . Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 2010; 70: 266–276.

    CAS  PubMed  Google Scholar 

  171. Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 2004; 64: 5048–5050.

    CAS  PubMed  Google Scholar 

  172. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011; 29: 1424–1430.

    PubMed  Google Scholar 

  173. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29: 1408–1414.

    PubMed  Google Scholar 

  174. Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A, Cho YJ et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 2012; 21: 155–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Sehgal SN . Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003; 35: 7S–14S.

    CAS  PubMed  Google Scholar 

  176. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009; 27: 3822–3829.

    CAS  PubMed  Google Scholar 

  177. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007; 356: 2271–2281.

    CAS  PubMed  Google Scholar 

  178. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008; 372: 449–456.

    CAS  PubMed  Google Scholar 

  179. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 514–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Khokhar NZ, Altman JK, Platanias LC . Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies. Curr Opin Oncol 2011; 23: 578–586.

    CAS  PubMed  Google Scholar 

  181. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012; 366: 520–529.

    CAS  PubMed  Google Scholar 

  182. Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005; 23: 5294–5304.

    CAS  PubMed  Google Scholar 

  183. Yang L, Clarke MJ, Carlson BL, Mladek AC, Schroeder MA, Decker P et al. PTEN loss does not predict for response to RAD001 (Everolimus) in a glioblastoma orthotopic xenograft test panel. Clin Cancer Res 2008; 14: 3993–4001.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J . Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 2008; 105: 17414–17419.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7: e38.

    PubMed  Google Scholar 

  186. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284: 8023–8032.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Bray K, Mathew R, Lau A, Kamphorst JJ, Fan J, Chen J et al. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 2012; 7: e41831.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Gentzler RD, Altman JK, Platanias LC . An overview of the mTOR pathway as a target in cancer therapy. Expert Opin Ther Targets 2012; 16: 481–489.

    CAS  PubMed  Google Scholar 

  189. Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ et al. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res 2011; 17: 4378–4388.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 2009; 106: 22299–22304.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009; 69: 3520–3528.

    CAS  PubMed  Google Scholar 

  192. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009; 8: 2204–2210.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Chen B, Tardell C, Higgins B, Packman K, Boylan JF, Niu H . BRAFV600E negatively regulates the AKT pathway in melanoma cell lines. PLoS One 2012; 7: e42598.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L C Platanias.

Ethics declarations

Competing interests

The authors declare no conflict of interst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauchamp, E., Platanias, L. The evolution of the TOR pathway and its role in cancer. Oncogene 32, 3923–3932 (2013). https://doi.org/10.1038/onc.2012.567

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.567

Keywords

This article is cited by

Search

Quick links