Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models

Abstract

RAS and Rho small GTPases are key molecular switches that control cell dynamics, cell growth and tissue development through their distinct signaling pathways. Although much has been learnt about their individual functions in both cell and animal models, the physiological and pathophysiological consequences of their signaling crosstalk in multi-cellular context in vivo remain largely unknown, especially in liver development and liver tumorigenesis. Furthermore, the roles of RhoA in RAS-mediated transformation and their crosstalk in vitro remain highly controversial. When challenged with carcinogens, zebrafish developed liver cancer that resembles the human liver cancer both molecularly and histopathologically. Capitalizing on the growing importance and relevance of zebrafish (Danio rerio) as an alternate cancer model, we have generated liver-specific, Tet-on-inducible transgenic lines expressing oncogenic KrasG12V, RhoA, constitutively active RhoAG14V or dominant-negative RhoAT19N. Double-transgenic lines expressing KrasG12V with one of the three RhoA genes were also generated. Based on quantitative bioimaging and molecular markers for genetic and signaling aberrations, we showed that the induced expression of oncogenic Kras during early development led to liver enlargement and hepatocyte proliferation, associated with elevated Erk phosphorylation, activation of Akt2 and modulation of its two downstream targets, p21Cip and S6 kinase. Such an increase in liver size and Akt2 expression was augmented by dominant-negative RhoAT19N, but was abrogated by the constitutive-active RhoAG14V. Consequently, induced expression of the oncogenic Kras in adult transgenic fish led to the development of hepatocellular carcinomas. Survival studies further revealed that the co-expression of dominant-negative RhoAT19N with oncogenic Kras increased the mortality rate compared with the other single or double-transgenic lines. This study provides evidence of the previously unappreciated signaling crosstalk between Kras and RhoA in regulating liver overgrowth and liver tumorigenesis. Our results also implicate that activating Rho could be beneficial to suppress the Kras-induced liver malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cox AD, Der CJ . Ras history: The saga continues. Small Gtpases 2010; 1: 2–27.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karreth FA, Tuveson DA . Modelling oncogenic Ras/Raf signaling in the mouse. Curr Opin Genet Dev 2009; 19: 4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernandez-Medarde A, Santos E . Ras in cancer and developmental diseases. Genes Cancer 2011; 2: 344–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D . RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11: 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  6. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  7. Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD . Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 2008; 14: 4300–4308.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Whittaker S, Marais R, Zhu AX . The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010; 29: 4989–5005.

    Article  CAS  PubMed  Google Scholar 

  9. Frau M, Biasi F, Feo F, Pascale RM . Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Mol Aspects Med 2010; 31: 179–193.

    Article  CAS  PubMed  Google Scholar 

  10. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM . Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 2004; 64: 48–54.

    Article  CAS  PubMed  Google Scholar 

  11. Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC . Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 2005; 27: 602–613.

    Article  PubMed  Google Scholar 

  12. Fukui K, Tamura S, Wada A, Kamada Y, Sawai Y, Imanaka K et al. Expression and prognostic role of RhoA GTPases in hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132: 627–633.

    Article  CAS  PubMed  Google Scholar 

  13. Li XR, Ji F, Ouyang J, Wu W, Qian LY, Yang KY . Overexpression of RhoA is associated with poor prognosis in hepatocellular carcinoma. Eur J Surg Oncol 2006; 32: 1130–1134.

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Dou K, Xiang H, Song Z, Zhao Q, Chen Y et al. Involvement of RhoA in progression of human hepatocellular carcinoma. J Gastroenterol Hepatol 2007; 22: 1916–1920.

    Article  CAS  PubMed  Google Scholar 

  15. Xia M, Land H . Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 2007; 14: 215–223.

    Article  CAS  PubMed  Google Scholar 

  16. Chen JC, Zhuang S, Nguyen TH, Boss GR, Pilz RB . Oncogenic Ras leads to Rho activation by activating the mitogen-activated protein kinase pathway and decreasing Rho-GTPase-activating protein activity. J Biol Chem 2003; 278: 2807–2818.

    Article  CAS  PubMed  Google Scholar 

  17. Sahai E, Olson MF, Marshall CJ . Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 2001; 20: 755–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olson MF, Paterson HF, Marshall CJ . Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 1998; 394: 295–299.

    Article  CAS  PubMed  Google Scholar 

  19. Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG . Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 2000; 149: 775–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karaguni IM, Herter P, Debruyne P, Chtarbova S, Kasprzynski A, Herbrand U et al. The new sulindac derivative IND 12 reverses Ras-induced cell transformation. Cancer Res 2002; 62: 1718–1723.

    CAS  PubMed  Google Scholar 

  21. Qiu RG, Chen J, McCormick F, Symons M . A role for Rho in Ras transformation. Proc Natl Acad Sci USA 1995; 92: 11781–11785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ . Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol 1995; 15: 6443–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L et al. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 1996; 16: 3923–3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleming YM, Ferguson GJ, Spender LC, Larsson J, Karlsson S, Ozanne BW et al. TGF-beta-mediated activation of RhoA signalling is required for efficient (V12)HaRas and (V600E)BRAF transformation. Oncogene 2009; 28: 983–993.

    Article  CAS  PubMed  Google Scholar 

  25. Vidal A, Millard SS, Miller JP, Koff A . Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem 2002; 277: 16433–16440.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 2012; 149: 642–655.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta S, Plattner R, Der CJ, Stanbridge EJ . Dissection of Ras-dependent signaling pathways controlling aggressive tumor growth of human fibrosarcoma cells: evidence for a potential novel pathway. Mol Cell Biol 2000; 20: 9294–9306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dreissigacker U, Mueller MS, Unger M, Siegert P, Genze F, Gierschik P et al. Oncogenic K-Ras down-regulates Rac1 and RhoA activity and enhances migration and invasion of pancreatic carcinoma cells through activation of p38. Cell Signal 2006; 18: 1156–1168.

    Article  CAS  PubMed  Google Scholar 

  29. Pawlak G, Helfman DM . Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol Biol Cell 2002; 13: 336–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Izawa I, Amano M, Chihara K, Yamamoto T, Kaibuchi K . Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 1998; 17: 2863–2871.

    Article  CAS  PubMed  Google Scholar 

  31. Shah V, Bharadwaj S, Kaibuchi K, Prasad GL . Cytoskeletal organization in tropomyosin-mediated reversion of ras-transformation: evidence for Rho kinase pathway. Oncogene 2001; 20: 2112–2121.

    Article  CAS  PubMed  Google Scholar 

  32. Man JH, Liang B, Gu YX, Zhou T, Li AL, Li T et al. Gankyrin plays an essential role in Ras-induced tumorigenesis through regulation of the RhoA/ROCK pathway in mammalian cells. J Clin Invest 2010; 120: 2829–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vial E, Sahai E, Marshall CJ . ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 2003; 4: 67–79.

    Article  CAS  PubMed  Google Scholar 

  34. Amatruda JF, Shepard JL, Stern HM, Zon LI . Zebrafish as a cancer model system. Cancer Cell 2002; 1: 229–231.

    Article  CAS  PubMed  Google Scholar 

  35. Beis D, Stainier DY . In vivo cell biology: following the zebrafish trend. Trends Cell Biol 2006; 16: 105–112.

    Article  CAS  PubMed  Google Scholar 

  36. Feitsma H, Cuppen E . Zebrafish as a cancer model. Mol Cancer Res 2008; 6: 685–694.

    Article  CAS  PubMed  Google Scholar 

  37. Lam SH, Gong Z . Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle 2006; 5: 573–577.

    Article  CAS  PubMed  Google Scholar 

  38. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 2006; 24: 73–75.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu S, Korzh V, Gong Z, Low BC . RhoA prevents apoptosis during zebrafish embryogenesis through activation of Mek/Erk pathway. Oncogene 2008; 27: 1580–1589.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu S, Liu L, Korzh V, Gong Z, Low BC . RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling. Cell Signal 2006; 18: 359–372.

    Article  CAS  PubMed  Google Scholar 

  41. Liu L, Zhu S, Gong Z, Low BC . K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis. PLoS One 2008; 3: e2850.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu S, Low BC . Using zebrafish for studying Rho GTPases signaling in vivo. Methods Mol Biol 2012; 827: 321–337.

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Lam SH, Mathavan S et al. A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Dis Model Mech 2011; 4: 801–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z . An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 2012; 5: 63–72.

    Article  CAS  PubMed  Google Scholar 

  45. Reboredo M, Kramer MG, Smerdou C, Prieto J, De Las Rivas J . Transcriptomic effects of Tet-on and mifepristone-inducible systems in mouse liver. Hum Gene Ther 2008; 19: 1233–1247.

    Article  CAS  PubMed  Google Scholar 

  46. Hancock JF . Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 2003; 4: 373–384.

    Article  CAS  PubMed  Google Scholar 

  47. Korzh S, Pan X, Garcia-Lecea M, Winata CL, Wohland T, Korzh V et al. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 2008; 8: 84.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mullany LK, Nelsen CJ, Hanse EA, Goggin MM, Anttila CK, Peterson M et al. Akt-mediated liver growth promotes induction of cyclin E through a novel translational mechanism and a p21-mediated cell cycle arrest. J Biol Chem 2007; 282: 21244–21252.

    Article  CAS  PubMed  Google Scholar 

  49. Jackson LN, Larson SD, Silva SR, Rychahou PG, Chen LA, Qiu S et al. PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2008; 294: G1401–G1410.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Q, Lui VW, Yeo W . Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol 2011; 7: 1149–1167.

    Article  CAS  PubMed  Google Scholar 

  51. Pal I, Mandal M . PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 2012; 33: 1441–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Evers BM . PKI-587 and sorafenib targeting PI3K/AKT/mTOR and Ras/Raf/MAPK pathways synergistically inhibit HCC cell proliferation. J Surg Res 2012; 176: 542–548.

    Article  CAS  PubMed  Google Scholar 

  53. Altomare DA, Testa JR . Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455–7464.

    Article  CAS  PubMed  Google Scholar 

  54. Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T et al. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 2010; 12: 221–232.

    Article  CAS  PubMed  Google Scholar 

  55. O’Shaughnessy RF, Akgul B, Storey A, Pfister H, Harwood CA, Byrne C . Cutaneous human papillomaviruses down-regulate AKT1, whereas AKT2 up-regulation and activation associates with tumors. Cancer Res 2007; 67: 8207–8215.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, Lynch HT et al. AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 2002; 23: 201–205.

    Article  CAS  PubMed  Google Scholar 

  57. Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N et al. Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep 2004; 11: 25–32.

    CAS  PubMed  Google Scholar 

  58. Rossig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S . Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 2001; 21: 5644–5657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Wang Z, Magnuson NS . Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res 2007; 5: 909–922.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001; 3: 245–252.

    Article  CAS  PubMed  Google Scholar 

  62. Mebratu Y, Tesfaigzi Y . How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 2009; 8: 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  63. Kim JH, Kushiro K, Graham NA, Asthagiri AR . Tunable interplay between epidermal growth factor and cell-cell contact governs the spatial dynamics of epithelial growth. Proc Natl Acad Sci USA 2009; 106: 11149–11153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002; 22: 8467–8477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang S, Tian YS, Lee YJ, Yu FH, Kim HM . Mechanisms by which the inhibition of specific intracellular signaling pathways increase osteoblast proliferation on apatite surfaces. Biomaterials 2011; 32: 2851–2861.

    Article  CAS  PubMed  Google Scholar 

  66. Ghosh PM, Bedolla R, Mikhailova M, Kreisberg JI . RhoA-dependent murine prostate cancer cell proliferation and apoptosis: role of protein kinase Czeta. Cancer Res 2002; 62: 2630–2636.

    CAS  PubMed  Google Scholar 

  67. Forti FL, Armelin HA . Vasopressin triggers senescence in K-ras transformed cells via RhoA-dependent downregulation of cyclin D1. Endocr Relat Cancer 2007; 14: 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  68. Morin P, Flors C, Olson MF . Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and impairing cytokinesis. Eur J Cell Biol 2009; 88: 495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Skinner J, Bounacer A, Bond JA, Haughton MF, deMicco C, Wynford-Thomas D . Opposing effects of mutant ras oncoprotein on human fibroblast and epithelial cell proliferation: implications for models of human tumorigenesis. Oncogene 2004; 23: 5994–5999.

    Article  CAS  PubMed  Google Scholar 

  70. Her GM, Chiang CC, Chen WY, Wu JL . In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 2003; 538: 125–133.

    Article  CAS  PubMed  Google Scholar 

  71. Li Z, Huang X, Zhan H, Zeng Z, Li C, Spitsbergen JM et al. Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J Hepatol 2011; 56: 419–425.

    Article  PubMed  Google Scholar 

  72. Emelyanov A, Gao Y, Naqvi NI, Parinov S . Trans-kingdom transposition of the maize dissociation element. Genetics 2006; 174: 1095–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Westerfield M . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio) 4th edn. University of Oregon Press, Eugene, 2000.

    Google Scholar 

  74. Spitsbergen JM, Peterson TS, Buhler DR . Neoplasia and Neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key Influences of diet and aquaculture system design. ILAR J 2012; 53: 114–125.

    Article  CAS  PubMed  Google Scholar 

  75. Boorman GA, Botts S, Bunton TE, Fournie JW, Harshbarger JC, Hawkins WE et al. Diagnostic criteria for degenerative, inflammatory, proliferative nonneoplastic and neoplastic liver lesions in medaka (Oryzias latipes): consensus of a National Toxicology Program Pathology Working Group. Toxicol Pathol 1997; 25: 202–210.

    Article  CAS  PubMed  Google Scholar 

  76. Ravichandran A, Low BC . SmgGDS antagonizes BPGAP1-induced Ras/ERK activation and neuritogenesis in PC12 cells differentiation. Mol Biol Cell 2012; 24: 145–156.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NUS graduate research scholarship awarded to TWC and in part by grants from the Biomedical Research Council of Singapore (ZG and BCL), National Medical Research Council (ZG and BCL) and the Mechanobiology Institute of Singapore (BCL), which is co-funded through the National Research Foundation and the Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B C Low.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chew, T., Liu, X., Liu, L. et al. Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models. Oncogene 33, 2717–2727 (2014). https://doi.org/10.1038/onc.2013.240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.240

Keywords

This article is cited by

Search

Quick links