Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice

Abstract

We have previously shown that the growth of human tumor xenografts in immunodeficient mice can be efficiently suppressed upon infection with the autonomous parvovirus H-1 or with cytokine-transducing derivatives thereof. To further evaluate the benefits of implementing parvoviruses in cancer gene therapy, we have created a new recombinant vector, MVMp/IP-10, transducing the immunoactive, antiangiogenic chemokine IP-10, and used this virus to treat syngeneic tumors grown in immunocompetent mice. Intratumoral/intraperitoneal administration of only 3×107 replication units of MVMp/IP-10 per animal strongly inhibited the progression of established H5V cell–induced vascular tumors, a highly malignant mouse model for human cavernous hemangioma and Kaposi's sarcoma. Retardation of recurrent tumor growth and suppression of life-threatening metastatic dissemination to internal organs were accompanied by a striking delay in hemangioma-associated mortality. Parental MVMp did not have a significant effect under these conditions up to the dose of 1010 infectious units/animal, but had strong antihemangiosarcoma activity when used to infect H5V cells ex vivo prior to implantation. In all cases, virus therapy was very well tolerated. Virus-induced suppression of hemangiosarcoma was dependent on host T cells and associated with intratumoral persistence of IFNγ-expressing cytotoxic lymphocytes, and led to the reduced expression of hepatic plasminogen activator inhibitor-1 (PAI-1), a metastasis-linked marker. This proof of principle study demonstrates that MVMp/IP-10 can aid the treatment of vascular tumors and that autonomous parvovirus-based vectors can be considered potent tools for cancer gene therapy purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kirn DH, McCormick F . Replicating viruses as selective cancer therapeutics Mol Med Today 1996 2: 519–527

    Article  CAS  PubMed  Google Scholar 

  2. Cornelis JJ, Haag A, Kornfeld C et al. Autonomous parvovirus vectors In: Cid-Arregui A, Garcia-Garrancá A, eds Viral Vectors: Basic Science and Gene Therapy Natick, MA: Eaton Publishing 2000 97–118

    Google Scholar 

  3. Rommelaere J, Cornelis JJ . Antineoplastic activity of parvoviruses J Virol Methods 1991 33: 233–251

    Article  CAS  PubMed  Google Scholar 

  4. Faisst S, Guittard D, Benner A et al. Dose-dependent regression of HeLa cell–derived tumours in SCID mice after parvovirus H-1 infection Int J Cancer 1998 75: 584–589

    Article  CAS  PubMed  Google Scholar 

  5. Guetta E, Graziani Y, Tal J . Suppression of Ehrlich ascites tumors in mice by minute virus of mice J Natl Cancer Inst 1986 76: 1177–1180

    CAS  PubMed  Google Scholar 

  6. Russell SJ, Brandenburger A, Flemming CL et al. Transformation-dependent expression of interleukin genes delivered by a recombinant parvovirus J Virol 1992 66: 2821–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kestler J, Neeb B, Struyf S et al. Cis requirements for the efficient production of recombinant DNA vectors based on autonomous parvoviruses Hum Gene Ther 1999 10: 1619–1632

    Article  CAS  PubMed  Google Scholar 

  8. Dupont F, Avalosse B, Karim A et al. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector Gene Ther 2000 7: 790–796

    Article  CAS  PubMed  Google Scholar 

  9. Haag A, Wayss K, Rommelaere J et al. Experimentally induced infection with autonomous parvoviruses, minute virus of mice and H-1, in the African multimammate mouse (Mastomys coucha) Comp Med 2000 50: 613–621

    CAS  PubMed  Google Scholar 

  10. Kimsey PB, Engers HD, Hirt B et al. Pathogenicity of fibroblast- and lymphocyte-specific variants of minute virus of mice J Virol 1986 59: 8–13

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Haag A, Menten P, Van Damme J et al. Highly efficient transduction and expression of cytokine genes in human tumor cells by means of autonomous parvovirus vectors; generation of antitumor responses in recipient mice Hum Gene Ther 2000 11: 597–609

    Article  CAS  PubMed  Google Scholar 

  12. Wetzel K, Menten P, Opdënakker G et al. Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts J Gene Med 2001 3: 326–327

    Article  CAS  PubMed  Google Scholar 

  13. Marchuk DA . Pathogenesis of hemangioma J Clin Invest 2001 107: 665–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGarvey ME, Tulpule A, Cai J et al. Emerging treatments for epidemic (AIDS-related) Kaposi's sarcoma Curr Opin Oncol 1998 10: 413–421

    Article  CAS  PubMed  Google Scholar 

  15. Williams RL, Risau W, Zerwes HG et al. Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment Cell 1989 57: 1053–1063

    Article  CAS  PubMed  Google Scholar 

  16. Liekens S, Verbeken E, Vandeputte M et al. A novel animal model for hemangiomas: inhibition of hemangioma development by the angiogenesis inhibitor TNP-470 Cancer Res 1999 59: 2376–2383

    CAS  PubMed  Google Scholar 

  17. Garlanda C, Parravicini C, Sironi M et al. Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors Proc Natl Acad Sci USA 1994 91: 7291–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Quevedo ME, Lannutti BJ et al. In vivo gene therapy with interleukin-12 inhibits primary vascular tumor growth and induces apoptosis in a mouse model J Invest Dermatol 1999 112: 775–781

    Article  CAS  PubMed  Google Scholar 

  19. Vizler C, Rosato A, Calderazzo F et al. Therapeutic effect of interleukin 12 on mouse haemangiosarcomas is not associated with an increased anti-tumour cytotoxic T-lymphocyte activity Br J Cancer 1998 77: 656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luster AD, Leder P . IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo J Exp Med 1993 178: 1057–1065

    Article  CAS  PubMed  Google Scholar 

  21. Arenberg DA, Kunkel SL, Polverini PJ et al. Interferon-gamma–inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non–small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases J Exp Med 1996 184: 981–992

    Article  CAS  PubMed  Google Scholar 

  22. Sgadari C, Angiolillo AL, Cherney BW et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo Proc Natl Acad Sci USA 1996 93: 13791–13796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biragyn A, Tani K, Grimm MC et al. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity Nat Biotechnol 1999 17: 253–258

    Article  CAS  PubMed  Google Scholar 

  24. Narvaiza I, Mazzolini G, Barajas M et al. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma–inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy J Immunol 2000 164: 3112–3122

    Article  CAS  PubMed  Google Scholar 

  25. Palmer K, Hitt M, Emtage PC et al. Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity Gene Ther 2001 8: 282–290

    Article  CAS  PubMed  Google Scholar 

  26. Regulier E, Paul S, Marigliano M et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach Cancer Gene Ther 2001 8: 45–54

    Article  CAS  PubMed  Google Scholar 

  27. Angiolillo AL, Sgadari C, Taub DD et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo J Exp Med 1995 182: 155–162

    Article  CAS  PubMed  Google Scholar 

  28. Farber JM . Mig and IP-10: CXC chemokines that target lymphocytes J Leukocyte Biol 1997 61: 246–257

    Article  CAS  PubMed  Google Scholar 

  29. Geras-Raaka E, Varma A, Ho H et al. Human interferon-gamma–inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein–coupled receptor J Exp Med 1998 188: 405–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cornelis JJ, Becquart P, Duponchel N et al. Transformation of human fibroblasts by ionizing radiation, a chemical carcinogen, or simian virus 40 correlates with an increase in susceptibility to the autonomous parvoviruses H-1 virus and minute virus of mice J Virol 1988 62: 1679–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Svetic A, Finkelman FD, Jian YC et al. Cytokine gene expression after in vivo primary immunization with goat antibody to mouse IgD antibody J Immunol 1991 147: 2391–2397

    CAS  PubMed  Google Scholar 

  32. Giese NA, Gazzinelli RT, Actor JK et al. Retrovirus-elicited interleukin-12 and tumour necrosis factor-alpha as inducers of interferon-gamma–mediated pathology in mouse AIDS Immunology 1996 87: 467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marti HH, Risau W . Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors Proc Natl Acad Sci USA 1998 95: 15809–15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kimura K, Ando K, Ohnishi H et al. Immunopathogenesis of hepatic fibrosis in chronic liver injury induced by repeatedly administered concanavalin A Int Immunol 1999 11: 1491–1500

    Article  CAS  PubMed  Google Scholar 

  35. Giese T . Development of quantitative RT-PCR tests for the expression of cytokine genes on the LightCycler In: Meuer S, Wittwer C, Nakagawara K, eds Rapid Cycle Real-Time PCR: Methods and Applications Berlin: Springer 2001 251–261

    Chapter  Google Scholar 

  36. Andreasen PA, Egelund R, Petersen HH . The plasminogen activation system in tumor growth, invasion, and metastasis Cell Mol Life Sci 2000 57: 25–40

    Article  CAS  PubMed  Google Scholar 

  37. Sabapathy KT, Pepper MS, Kiefer F et al. Polyoma middle T-induced vascular tumor formation: the role of the plasminogen activator/plasmin system J Cell Biol 1997 137: 953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bielenberg DR, Bucana CD, Sanchez R et al. Progressive growth of infantile cutaneous hemangiomas is directly correlated with hyperplasia and angiogenesis of adjacent epidermis and inversely correlated with expression of the endogenous angiogenesis inhibitor, IFN-beta Int J Oncol 1999 14: 401–408

    CAS  PubMed  Google Scholar 

  39. Dong QG, Graziani A, Garlanda C et al. Anti–tumor activity of cytokines against opportunistic vascular tumors in mice Int J Cancer 1996 65: 700–708

    Article  CAS  PubMed  Google Scholar 

  40. Young HA, Hardy KJ . Role of interferon-gamma in immune cell regulation J Leukocyte Biol 1995 58: 373–381

    Article  CAS  PubMed  Google Scholar 

  41. Bajou K, Noel A, Gerard RD et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization Nat Med 1998 4: 923–928

    Article  CAS  PubMed  Google Scholar 

  42. Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti–tumor immunity Proc Natl Acad Sci USA 1993 90: 3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Addison CL, Arenberg DA, Morris SB et al. The CXC chemokine, monokine induced by interferon-gamma, inhibits non–small cell lung carcinoma tumor growth and metastasis Hum Gene Ther 2000 11: 247–261

    Article  CAS  PubMed  Google Scholar 

  44. Lannutti BJ, Gately ST, Quevedo ME et al. Human angiostatin inhibits murine hemangioendothelioma tumor growth in vivo Cancer Res 1997 57: 5277–5280

    CAS  PubMed  Google Scholar 

  45. O'Reilly MS, Boehm T, Shing Y et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth Cell 1997 88: 277–285

    Article  CAS  PubMed  Google Scholar 

  46. Vanacker JM, Rommelaere J . Non-structural proteins of autonomous parvoviruses: from cellular effects to molecular mechanisms Semin Virol 1995 6: 291–297

    Article  CAS  Google Scholar 

  47. Loetscher M, Gerber B, Loetscher P et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes J Exp Med 1996 184: 963–969

    Article  CAS  PubMed  Google Scholar 

  48. Taub DD, Sayers TJ, Carter CR et al. Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis J Immunol 1995 155: 3877–3888

    CAS  PubMed  Google Scholar 

  49. Taub DD, Lloyd AR, Conlon K et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells J Exp Med 1993 177: 1809–1814

    Article  CAS  PubMed  Google Scholar 

  50. Yao L, Sgadari C, Furuke K et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12 Blood 1999 93: 1612–1621

    CAS  PubMed  Google Scholar 

  51. Salcedo R, Resau JH, Halverson D et al. Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells FASEB J 2000 14: 2055–2064

    Article  CAS  PubMed  Google Scholar 

  52. Romagnani P, Annunziato F, Lasagni L et al. Cell cycle–dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity J Clin Invest 2001 107: 53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ochsenbein AF, Sierro S, Odermatt B et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction Nature 2001 411: 1058–1064

    Article  CAS  PubMed  Google Scholar 

  54. Sgadari C, Angiolillo AL, Tosato G . Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10 Blood 1996 87: 3877–3882

    CAS  PubMed  Google Scholar 

  55. Tannenbaum CS, Tubbs R, Armstrong D et al. The CXC chemokines IP-10 and Mig are necessary for IL-12–mediated regression of the mouse RENCA tumor J Immunol 1998 161: 927–932

    CAS  PubMed  Google Scholar 

  56. Barlow CF, Priebe CJ, Mulliken JB et al. Spastic diplegia as a complication of interferon Alfa-2a treatment of hemangiomas of infancy J Pediatr 1998 132: 527–530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to JM Farber (NIH, Bethesda, MD, USA) for the mouse IP-10 cDNA clone and IP-10 primer sequences used in RT-PCR. We thank Search-LC (Heidelberg, Germany) for assistance in performing LightCycler™ QRT-PCR. We also thank the DKFZ Department of Cellular and Molecular Pathology (Director H-J Gröne) for performing histopathological examinations; and C Cziepluch and HC Morse (III) for critical reading of the manuscript. This work was supported by EU Commission Grants BIO 4 CT97-2167 and QLRT-2000-01010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalia A Giese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giese, N., Raykov, Z., DeMartino, L. et al. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther 9, 432–442 (2002). https://doi.org/10.1038/sj.cgt.7700457

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700457

Keywords

This article is cited by

Search

Quick links