Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Residual Disease in Non-Hodgkin's Lymphomas

Prognostic significance of molecular staging by PCR-amplification of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma (DLBCL)

Abstract

The prognostic value of the detection of peripheral blood (PB) and/or bone marrow (BM) involvement by polymerase chain reaction (PCR) amplification of rearranged immunoglobulin heavy chain (IgH) and immunoglobulin kappa light chain (Igκ) genes was evaluated in 155 patients with diffuse large B-cell lymphomas (DLBCL). Immunoglobulin gene rearrangements (IgR) were detected in 35/155 (23%) patients. The presence of IgR in PB/BM was related to clinical stage (CS I–III vs CS IV; P<0.001), histopathological detection of BM involvement (P<0.001), and the International Prognostic Index (P<0.001). IgR-positive cases had a significantly lower complete remission (CR) rate (18/35, 51%) than IgR-negative patients (85/120, 71%; P=0.042), and a significantly poorer overall survival (OAS) at 5 years (25 vs 66%; P<0.001). There was a significant difference in the estimated OAS at 5 years between patients with negative BM histology and negative PCR results (66%), patients with negative BM histology but positive IgR (37%), and patients with positive BM histology (12%). Our results indicate that molecular methods improve the accuracy of staging in patients with DLBCL and define a group of patients with normal bone marrow histology who have a significantly poorer OAS due to molecular detection of PB/BM involvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM, Mize EM et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med 1993; 328: 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  2. Miller TP, Dahlberg S, Cassady JR, Adelstein DJ, Spier CM, Grogan TM et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin's lymphoma. N Engl J Med 1998; 339: 21–26.

    Article  CAS  PubMed  Google Scholar 

  3. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med 1993; 329: 987–994.

  4. Langerak AW, van Krieken JH, Wolvers-Tettero IL, Kerkhof E, Mulder AH, Vrints LW et al. The role of molecular analysis of immunoglobulin and T cell receptor gene rearrangements in the diagnosis of lymphoproliferative disorders. J Clin Pathol 2001; 54: 565–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  PubMed  Google Scholar 

  6. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  7. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  PubMed  Google Scholar 

  8. Kuppers R, Klein U, Hansmann ML, Rajewsky K . Cellular origin of human B-cell lymphomas. N Engl J Med 1999; 341: 1520–1529.

    Article  CAS  PubMed  Google Scholar 

  9. Stevenson F, Sahota S, Zhu D, Ottensmeier C, Chapman C, Oscier D et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol Rev 1998; 162: 247–259.

    Article  CAS  PubMed  Google Scholar 

  10. Derksen PW, Langerak AW, Kerkhof E, Wolvers-Tettero IL, Boor PP, Mulder AH et al. Comparison of different polymerase chain reaction-based approaches for clonality assessment of immunoglobulin heavy-chain gene rearrangements in B-cell neoplasia. Mod Pathol 1999; 12: 794–805.

    CAS  PubMed  Google Scholar 

  11. Aubin J, Davi F, Nguyen-Salomon F, Leboeuf D, Debert C, Taher M et al. Description of a novel FR1 IgH PCR strategy and its comparison with three other strategies for the detection of clonality in B cell malignancies. Leukemia 1995; 9: 471–479.

    CAS  PubMed  Google Scholar 

  12. Gong JZ, Zheng S, Chiarle R, Wolf-Peeters C, Palestro G, Frizzera G et al. Detection of immunoglobulin kappa light chain rearrangements by polymerase chain reaction. An improved method for detecting clonal B-cell lymphoproliferative disorders. Am J Pathol 1999; 155: 355–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seriu T, Hansen-Hagge TE, Stark Y, Bartram CR . Immunoglobulin kappa gene rearrangements between the kappa deleting element and Jkappa recombination signal sequences in acute lymphoblastic leukemia and normal hematopoiesis. Leukemia 2000; 14: 671–674.

    Article  CAS  PubMed  Google Scholar 

  14. Hiorns LR, Nicholls J, Sloane JP, Horwich A, Ashley S, Brada M . Peripheral blood involvement in non-Hodgkin's lymphoma detected by clonal gene rearrangement as a biological prognostic marker. Br J Cancer 1994; 69: 347–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horning SJ, Galili N, Cleary M, Sklar J . Detection of non-Hodgkin's lymphoma in the peripheral blood by analysis of antigen receptor gene rearrangements: results of a prospective study. Blood 1990; 75: 1139–1145.

    CAS  PubMed  Google Scholar 

  16. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML et al. A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84: 1361–1392.

    CAS  PubMed  Google Scholar 

  17. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting – Airlie House, Virginia, November, 1997. Hematol J 2000; 1: 53–66.

    Article  CAS  PubMed  Google Scholar 

  18. Armitage JO, Dick FR, Corder MP, Garneau SC, Platz CE, Slymen DJ . Predicting therapeutic outcome in patients with diffuse histiocytic lymphoma treated with cyclophosphamide, adriamycin, vincristine and prednisone (CHOP). Cancer 1982; 50: 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  19. Fisher RI, DeVita Jr VT, Hubbard SM, Longo DL, Wesley R, Chabner BA et al. Diffuse aggressive lymphomas: increased survival after alternating flexible sequences of proMACE and MOPP chemotherapy. Ann Intern Med 1983; 98: 304–309.

    Article  CAS  PubMed  Google Scholar 

  20. Longo DL, DeVita Jr VT, Duffey PL, Wesley MN, Ihde DC, Hubbard SM et al. Superiority of ProMACE-CytaBOM over ProMACE-MOPP in the treatment of advanced diffuse aggressive lymphoma: results of a prospective randomized trial. J Clin Oncol 1991; 9: 25–38.

    Article  CAS  PubMed  Google Scholar 

  21. Pavlovsky S, Santarelli MT, Erazo A, Diaz Maqueo JC, Somoza N, Lluesma GM et al. Results of a randomized study of previously-untreated intermediate and high grade lymphoma using CHOP versus CNOP. Ann Oncol 1992; 3: 205–209.

    Article  CAS  PubMed  Google Scholar 

  22. O'Reilly SE, Connors JM, Howdle S, Hoskins P, Klasa R, Klimo P et al. In search of an optimal regimen for elderly patients with advanced-stage diffuse large-cell lymphoma: results of a phase II study of P/DOCE chemotherapy. J Clin Oncol 1993; 11: 2250–2257.

    Article  CAS  PubMed  Google Scholar 

  23. Szanto I, Fleischmann T, Eckhardt S . Treatment of resistant Hodgkin's disease with CCNU, etoposide and prednimustine (CEP). Oncology 1991; 48: 456–458.

    Article  CAS  PubMed  Google Scholar 

  24. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999; 17: 1244.

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  26. Frank TS, Svoboda-Newman SM, Hsi ED . Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR. Diagn Mol Pathol 1996; 5: 220–224.

    Article  CAS  PubMed  Google Scholar 

  27. Sioutos N, Bagg A, Michaud GY, Irving SG, Hartmann DP, Siragy H et al. Polymerase chain reaction versus Southern blot hybridization. Detection of immunoglobulin heavy-chain gene rearrangements. Diagn Mol Pathol 1995; 4: 8–13.

    Article  CAS  PubMed  Google Scholar 

  28. Liang R, Chan V, Chan TK, Wong T, Chiu E, Lie A et al. Detection of immunoglobulin gene rearrangement in lymphoid malignancies of B-cell lineage by seminested polymerase chain reaction gene amplification. Am J Hematol 1993; 43: 24–28.

    Article  CAS  PubMed  Google Scholar 

  29. Trainor KJ, Brisco MJ, Wan JH, Neoh S, Grist S, Morley AA . Gene rearrangement in B- and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood 1991; 78: 192–196.

    CAS  PubMed  Google Scholar 

  30. Fodinger M, Winkler K, Mannhalter C, Chott A . Combined polymerase chain reaction approach for clonality detection in lymphoid neoplasms. Diagn Mol Pathol 1999; 8: 80–91.

    Article  CAS  PubMed  Google Scholar 

  31. Kwok S, Higuchi R . Avoiding false positives with PCR. Nature 1989; 339: 237–238.

    Article  CAS  PubMed  Google Scholar 

  32. Lo YM, Mehal WZ, Fleming KA . False-positive results and the polymerase chain reaction. Lancet 1988; 2: 679.

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  34. Macintyre EA, Delabesse E . Molecular approaches to the diagnosis and evaluation of lymphoid malignancies. Semin Hematol 1999; 36: 373–389.

    CAS  PubMed  Google Scholar 

  35. Beishuizen A, de Bruijn MAC, Pongers-Willemse MJ, Verhoeven M-AJ, van Wering ER, Hählen K et al. Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: a new molecular target for detection of minimal residual disease. Leukemia 1997; 11: 2200–2207.

    Article  CAS  PubMed  Google Scholar 

  36. Van der Velden VHJ, Willemse MJ, van der Schoot CE, Hählen K, van Wering ER, van Dongen JJM . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  37. Szczepanski T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJM . Precursor-B-ALL with DH-JH gene rearrangements have an immature immunophenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  38. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. Lymphoma/Leukemia Molecular Profiling Project. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Susanne Hagmann for expert assistance with data management, and to Monika Heimbach and Helmut Sommer for excellent technical assistance. This study was supported by the FWF Grant P 13984-GEN and the Center of Molecular Medicine of the Austrian Academy of Sciences, and by Grant NB 9964 of the Austrian National Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Jaeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitterbauer-Hohendanner, G., Mannhalter, C., Winkler, K. et al. Prognostic significance of molecular staging by PCR-amplification of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma (DLBCL). Leukemia 18, 1102–1107 (2004). https://doi.org/10.1038/sj.leu.2403376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403376

Keywords

This article is cited by

Search

Quick links